怎么看数列收敛还是分散 如何判断数列收敛还是发散?
怎样判别一个数列是发散还是收敛?如何判断数列收敛或发散?怎么判断函数和数列是收敛或发散的?如何判断一个数列是发散还是收敛?如何判断数列收敛还是发散?如何判断一个数列是发散还是收敛?
本文导航
怎样判别一个数列是发散还是收敛?
加减的时候, 把高阶的无穷小直接舍去
如 1 + 1/n, 用1来代替
乘除的时候, 用比较简单的等价无穷小来代替原来复杂的无穷小来
如 1/n * sin(1/n) 用1/n^2 来代替
如果数列项数n趋于无穷时,数列的极限==实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。
如何判断数列收敛或发散?
看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察,
加减的时候,把高阶的无穷小直接舍去
如 1 + 1/n,用1来代替
乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来
如 1/n * sin(1/n) 用1/n^2 来代替
怎么判断函数和数列是收敛或发散的
收敛函数:若函数在定义域的每一点都收敛,则通常称函数是收敛的。函数在某点收敛,是指当自变量趋向这一点时,其函数值的极限就等于函数在该点的值。有界函数指的是对于定义域中的任意一个值,相应的函数值都在一个区间内变化,也就是函数值的绝对值总小于某一个固定值,那函数就是有界的。
收敛函数一定有界,但是有界函数不一定收敛,如f(x)在x=0处f(0)=2,在其他x处f(x)=1,那么f(x)在x=0处就不是收敛的,那么f(x)就不是收敛函数,但是f(x)是有界的,因为1≤f(x)≤2。
判断数列是否收敛或者发散:
1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。
2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。
3、加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如 1/n * sin(1/n) 用1/n^2 来代替
4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。
拓展资料:
函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。
函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的函数极限证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。
以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x。时的极限。
问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。
如何判断一个数列是发散还是收敛?
看n趋向无穷大时,Xn是否趋向一个常数,即可以判断收敛还是发散。
可是有时Xn比较复杂,并不好观察,加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小。
收敛函数一定有界,但是有界函数不一定收敛,如f(x)在x=0处f(0)=2,在其他x处f(x)=1,那么f(x)在x=0处就不是收敛的,那么f(x)就不是收敛函数,但是f(x)是有界的,因为1≤f(x)≤2。
扩展资料基本公式:
1、一般数列的通项an与前n项和Sn的关系:an=Sn-Sn-1。
2、等差数列的通项公式:an=a1+(n-1)d; ; ; an=ak+(n-k)d; ; ;(其中a1为首项、ak为已知的第k项); 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=An^2+Bn; ; ;Sn=na1+[n(n-1)]d/2; ;Sn=(a1+an)n/2。
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1 qn-1; ; an= ak qn-k; (其中a1为首项、ak为已知的第k项,an≠0)。
5、等比数列的前n项和公式:当q=1时,Sn=n a1; ; ;(是关于n的正比例式)。
如何判断数列收敛还是发散?
看n趋向无穷大时,Xn是否趋向一个常数,即可以判断收敛还是发散。
可是有时Xn比较复杂,并不好观察,加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小。
收敛函数一定有界,但是有界函数不一定收敛,如f(x)在x=0处f(0)=2,在其他x处f(x)=1,那么f(x)在x=0处就不是收敛的,那么f(x)就不是收敛函数,但是f(x)是有界的,因为1≤f(x)≤2。
扩展资料:
日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有an=m,am=n,则am+n=0。其于数学的中的应用,可举例:
快速算出从23到132之间6的整倍数有多少个,算法不止一种,这里介绍用数列算令等差数列首项a1=24(24为6的4倍),等差d=6;于是令an= 24+6(n-1)<=132 即可解出n=19。
如何判断一个数列是发散还是收敛
方法/步骤:
认识收敛数列的性质。收敛数列其实是建立在数列极限的定义上的。即收敛数列的极限唯一,有且仅有一个极限。
了解证明数列数列是发散或收敛的基本方法。一般是反证法居多。
学习例题,看题干解问题。主要看数列的定义和相关关于数列的题设
利用极限唯一的定义来证明数列的收敛性。注意:只能利用定义来进行求取和证明,不可
检查解答过程,发现解题过程中的问题进行修改。保证问题解决。