什么是有界而不收敛 高等数学收敛和发散的定义
跪求高数大神解释有界和收敛的区别,有界不一定收敛么?有界一定收敛吗?为什么有界数列不一定收敛?有界函数一定收敛吗?为什么有界不一定收敛?数列有界和收敛的关系是什么?
本文导航
高等数学收敛和发散的定义
一、两者的性质不同:
1、有界的性质:
(1)单调性:闭区间上的单调函数必有界。其逆命题不成立。
(2)连续性:闭区间上的连续函数必有界。其逆命题不成立。
(3)可积性:闭区间上的可积函数必有界。其逆命题不成立。
2、收敛的性质:
(1)全局收敛:对于任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk+1=φ(Xk)在[a,b]上收敛于X*。
(2)局部收敛:若存在X*在某邻域R={X| |X-X*|<δ},对任何的X0∈R,由Xk+1=φ(Xk)所产生的点列收敛,则称Xk+1=φ(Xk)在R上收敛于X*。
二、两者的概述不同:
1、有界的概述:若存在两个常数m和M,使函数y=f(x),x∈D 满足m≤f(x)≤M,x∈D 。 则称函数y=f(x)在D有界,其中m是它的下界,M是它的上界。
2、收敛的概述:是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。
三、两者的意义不同:
1、有界的意义:根据确界原理,ƒ在定义域上有上(下)确界。一个特例是有界数列,其中X是所有自然数所组成的集合N。由ƒ (x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。
2、收敛的意义:数学分析的基本概念之一,它与“有确定的(或有限的)极限”同义,“收敛于……”相当于说“极限是……(确定的点或有限的数)”。
有界不一定收敛,因为有界函数并不一定是连续的。
参考资料来源:百度百科-有界
参考资料来源:百度百科-有界函数
参考资料来源:百度百科-收敛(数学、经济学名词)
参考资料来源:百度百科-收敛性
无界意味着无穷大吗
有界不一定收敛是指此数列或函数存在上下限,但没有一种趋势是趋向于某一个确定的数,就像正弦函数一样,虽然有正负1给它作为上下限,但随着x的变化,函数值没有趋向于一个确定的1一样。
收敛一定有界指的是此数列或函数存在一个趋势,这个趋势的极限是一个确定的值,就像反比例函数一样。
收敛数列一定有界(反证,假设无界,肯定不收敛) ,有界数列不一定收敛(反例,数列{(-1)^n}是有界的,但它却是发散的)。
关于函数的有界性.应注意:函数在某区间上不是有界就是无界,二者必属其一。
从几何学的角度很容易判别一个函数是否有界,如果找不到两条与x轴平行的直线使得函数的图形介于它们之间,那么函数一定是无界的。
若存在两个常数m和M,使函数y=f(x),x∈D 满足m≤f(x)≤M,x∈D 。 则称函数y=f(x)在D有界,其中m是它的下界,M是它的上界。
数列的收敛有界性
有界不一定收敛是指此数列或函数存在上下限,但没有一种趋势是趋向于某一个确定的数,就像正弦函数一样,虽然有正负1给它作为上下限,但随着x的变化,函数值没有趋向于一个确定的1一样。
收敛一定有界指的是此数列或函数存在一个趋势,这个趋势的极限是一个确定的值,就像反比例函数一样。
收敛数列一定有界(反证,假设无界,肯定不收敛)。
有界数列不一定收敛(反例,数列{(-1)^n}是有界的,但它却是发散的)。
有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。
例如:f(x)=1/x 当x趋于无穷是极限为0,所以收敛。
f(x)= x 当x趋于无穷是极限为无穷,即没有极限,所以发散。
在数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。
无界函数不一定是收敛函数
有界函数不一定收敛。
收敛函数一定有界但是有界函数不一定收敛,如f(x)在x=0处f(0)=2,在其他x处f(x)=1,那么f(x)在x=0处就不是收敛的,那么f(x)就不是收敛函数,但是f(x)是有界的,因为1≤f(x)≤2。如x趋于无穷时有界函数sinx不收敛。单调有界函数一定收敛。
性质
函数的有界性与其他函数性质之间的关系函数的性质:有界性,单调性,周期性,连续性,可积性。单调性闭区间上的单调函数必有界。其逆命题不成立;连续性闭区间上的连续函数必有界。其逆命题不成立;可积性闭区间上的可积函数必有界。其逆命题不成立。
有界函数并不一定是连续的。根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。
一个特例是有界数列,其中X是所有自然数所组成的集合N。由ƒ(x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。
怎样判断是绝对收敛还是条件收敛
有界数列不一定收敛。例如,已知数列{(-1)^n}是有界的,但它却是发散的。换句话说,有界是数列收敛的必要条件而不是充分条件。又例如数列{b(n)},b(n)=(-1)^n,|b(n)|<=1{b(n)}有界,b(n)为摆动数列,但是不收敛。
有界数列和收敛的区别有以下两点:
1、收敛数列一定是有界数列,有界数列不一定是收敛数列。
2、收敛数列趋向于一个定值,有界数列趋向于一个极限值。
有界数列:
有界数列,是数学领域的定理,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。
假设存在定值a,任意n有{An(n为下角标,下同)=B,称数列{An}有下界B,如果同时存在A、B时的数列{An}的值在区间[A,B]内,数列有界。
收敛数列有界性通俗解释
收敛的数列{Sn}必定有界。因为|Sn-s|a)--->-es-e<Sn<s+e,说明{Sn}的项(除开始的几项以外)都在有限区间(s-e,s+e)内,因而有界。;
有界的数列未必收敛。例如数列:1,-1,1,-1,......的所有项的值都在0与2之间,是有界的,但是却不趋向于任何实数,因而无极限就是不收敛。
一、有界函数的性质:
1、单调性
闭区间上的单调函数必有界。其逆命题不成立。
2、连续性
闭区间上的连续函数必有界。其逆命题不成立。
3、可积性
闭区间上的可积函数必有界。其逆命题不成立。
4、有界性
5、周期性
二、设函数f(x)是某一个实数集A上有定义,如果存在正数M 对于一切X∈A都有不等式|f(x)|≤M的则称函数f(x)在A上有界,如果不存在这样定义的正数M则称函数f(x)在A上无界。
设f为定义在D上的函数,若存在数M(L),使得对每一个x∈D有: ƒ(x)≤M(ƒ(x)≥L)则称ƒ在D上有上(下)界的函数,M(L)称为ƒ在D上的一个上(下)界。