数字信号处理稳态解是什么 数字信号处理的基本方法
数字信号处理名词解释 在线等,高分,数字信号处理主要讲什么?应该怎么学?需要哪些预备知识?数字信号处理有什么作用啊,它主要解决了什么问题,有那些好处和缺点,它以后可以做什么的?求?有人学过数字信号处理这门课吗,我怎么完全看不懂,很是受伤?数字信号处理器的知识简介,统计数字信号处理 参数谱估计与解卷积。
本文导航
数字信号处理是算数的吗
(在单位时间内物体完成脉冲的次数叫数字频率)数字频率w(rad)
频率的2π倍叫角频率(单位rad/s)
数字信号处理中的三种基本操作:
数字信号的三种调制方式为振幅调制、频率调制、相位调制。
FIR系统中具有线性相位的条件 :
FIR滤波器经常被设计成为线性相位的,当然不是必须要这么做。如果滤波器的系数是关于中心系数对称的,也就是说第一个系数和最后一个系数相同,第二个系数和倒数第二个相同,那么FIR滤波器就是线性的。有奇数个系数的FIR滤波器,中心单独的系数没有对应的。
双线性法设计IIR滤波器的基本原理和主要特点:
数字滤波器的作用是利用离散时间系统的特性对输入信号波形(或频谱)进行加工处理,或者说利用数字方法按预定的要求对信号进行变换。
主要特点: 频率特性好 增益高与模拟滤波相比,它具有精度和稳定性高、系统函数容易改变、灵活性强、便于大规模集成和可实现多维滤波等优点
数字信号处理的基本方法
预备知识:积分变换与复变函数---信号与系统
怎么学:有目标(学到什么程度),多看课本(相关的书籍要看看,比较经典外籍书的大部分是电子出版社出版),多动手做练习加深对概念的理解,公式很多,重要的是公式的意义,一定要记牢,理解;多比较(和信号与系统,重点是模拟和数字比较):最后是实验和滤波器设计,多想想结果为什么是这样,这是最重要的(考试相比很简单)。
关于时域、频域、S域、Z域存在的意义与作用,笼统理解是为了描述输入输出与系统的关系,比如人的耳朵就是一个高级fourier分析仪,傅里叶变换是电子工程师的有力武器。
信号与系统和数字信号处理原理
作用简单来说就是把模拟量数字化,处理成0和1组成的序列。
它的优点主要是设备灵活、精确、抗干扰能力强、远距离传输速度快且不失真(这个失真是指传输上的),模拟信号在远距离传输时信号衰减大,且抗干扰能力差
要说缺点好像能想到的只是在模数转换时因采样率的关系会出现失真,但随着技术的进步采样率越来越高,这个缺点也越来越不明显了
数字信号处理要先学信号与系统吗
《数字信号处理》是相关专业本科生培养中,继《信号与系统》、《通信原理》、《数字逻辑》等课程之后的一门专业技术课。数字信号处理的英文缩写是 DSP ,包括两重含义:数字信号处理技术( Digital Signal Processing )和数字信号处理器( Digital Signal Processor )。目前我们对本科生开设的数字信号处理课程大多侧重在处理技术方面,由于课时安排和其他一些原因,通常的特点是注重理论推导而忽略具体实现技术的介绍。最后导致的结果就是学生在学习了数字信号处理课程之后并不能把所学的理论知识与实际的工程应用联系起来,表现在他们做毕业设计时即使是对学过的相关内容也无法用具体的手段来实现,或者由于无法与具体实际相挂钩理解而根本就忘记了。我相信,我们开设本课程的根本目的应该是让学生在熟练掌握数字信号处理的基本原理基础上,能结合工程实际学习更多的 DSP 实现技术及其在通信、无线电技术中的应用技能,这也是符合 DSP 本身的二重定义的,学生通过本课程的学习,将应该能从事数字信号处理方面的研究开发、产品维护等方面的技术工作。其实很多学生在大学四年学习过后都有这种反思:到底我在大学学到了什么呢?难道就是一些理论知识吗?他们将如何面对竞争日益激烈的社会呢?
因此,大家在应用MATLAB学习并努力掌握数字信号处理的原理,基本理论的同时,应该始终意识到该课程在工程应用中的重要性,并在课后自学一些有关DSP技术及FPGA技术方面的知识。这样,学习本课程学习的三部曲是:一,学习数字信号处理的基本理论;二,掌握如何用 MATLAB 实现一些基本的算法,如 FFT , FIR 和 IIR 滤波器设计等;三,选择一种数字信号处理器作为实现平台进行实践学习,比如 TI 公司的 TMS320C54x 系列芯片,包括该处理器的硬件和软件系统,如Code Composer Studio及像MATLAB Link for Code Composer Studio这样的工具。
在学习数字信号处理的过程中,要注重培养自己的工程思维方法。数字信号处理的理论含有许多研究问题和解决问题的科学方法, 例如频率域的分析方法、傅里叶变换的离散做法、离散傅里叶变换的快速计算方法等, 这些方法很好。虽然它们出现在信号处理的专业领域, 但是, 其基本精神是利用事物的特点和规律解决实际问题, 这在各个领域中是相同的。还有, 数字信号处理的理论的产生是有原因的, 这些原因并不难懂, 就是理论为应用服务, 提高使用效率。
数字信号处理原理框图
DSP的算法有多种。绝大多数的DSP处理器使用定点算法,数字表示为整数或-1.0到+1.0之间的小数形式。有些处理器采用浮点算法,数据表示成尾数加指数的形式:尾数×2指数。浮点算法是一种较复杂的常规算法,利用浮点数据可以实现大的数据动态范围(这个动态范围可以用最大和最小数的比值来表示)。浮点DSP在应用中,设计工程师不用关心动态范围和精度一类的问题。浮点DSP比定点DSP更容易编程,但是成本和功耗高。由于成本和功耗的原因,一般批量产品选用定点DSP。编程和算法设计人员通过分析或仿真来确定所需要的动态范围和精度。如果要求易于开发,而且动态范围很宽、精度很高,可以考虑采用浮点DSP。也可以在采用定点DSP的条件下由软件实现浮点计算,但是这样的软件程序会占用大量处理器时间,因而很少使用。有效的办法是“块浮点”,利用该方法将具有相同指数,而尾数不同的一组数据作为数据块进行处理。“块浮点”处理通常用软件来实现。 所有浮点DSP的字宽为32位,而定点DSP的字宽一般为16位,也有24位和20位的DSP,如摩托罗拉的DSP563XX系列和Zoran公司的ZR3800X系列。由于字宽与DSP的外部尺寸、管脚数量以及需要的存储器的大小等有很大的关系,所以字宽的长短直接影响到器件的成本。字宽越宽则尺寸越大,管脚越多,存储器要求也越大,成本相应地增大。在满足设计要求的条件下,要尽量选用小字宽的DSP以减小成本。在关于定点和浮点的选择时,可以权衡字宽和开发复杂度之间的关系。例如,通过将指令组合连用,一个16位字宽的DSP器件也可以实现32位字宽双精度算法(当然双精度算法比单精度算法慢得多)。如果单精度能满足绝大多数的计算要求,而仅少量代码需要双精度,这种方法也可行,但如果大多数的计算要求精度很高,则需要选用较大字宽的处理器。请注意,绝大多数DSP器件的指令字和数据字的宽度一样,也有一些不一样,如ADI(模拟器件公司)的ADSP-21XX系列的数据字为16位而指令字为24位。 处理器是否符合设计要求,关键在于是否满足速度要求。测试处理器的速度有很多方法,最基本的是测量处理器的指令周期,即处理器执行最快指令所需要的时间。指令周期的倒数除以一百万,再乘以每个周期执行的指令数,结果即为处理器的最高速率,单位为每秒百万条指令MIPS。但是指令执行时间并不能表明处理器的真正性能,不同的处理器在单个指令完成的任务量不一样,单纯地比较指令执行时间并不能公正地区别性能的差异。现在一些新的DSP采用超长指令字(VLIW)架构,在这种架构中,单个周期时间内可以实现多条指令,而每个指令所实现的任务比传统DSP少,因此相对VLIW和通用DSP器件而言,比较MIPS的大小时会产生误导作用。即使在传统DSP之间比较MIPS大小也具有一定的片面性。例如,某些处理器允许在单个指令中同时对几位一起进行移位,而有些DSP的一个指令只能对单个数据位移位;有些DSP可以进行与正在执行的ALU指令无关的数据的并行处理(在执行指令的同时加载操作数),而另外有些DSP只能支持与正在执行的ALU指令有关的数据并行处理;有些新的DSP允许在单个指令内定义两个MAC。因此仅仅进行MIPS比较并不能准确得出处理器的性能。解决上述问题的方法之一是采用一个基本的操作(而不是指令)作为标准来比较处理器的性能。常用到的是MAC操作,但是MAC操作时间不能提供比较DSP性能差异的足够信息,在绝大多数DSP中,MAC操作仅在单个指令周期内实现,其MAC时间等于指令周期时间,如上所述,某些DSP在单个MAC周期内处理的任务比其它DSP多。MAC时间并不能反映诸如循环操作等的性能,而这种操作在所有的应用中都会用到。最通用的办法是定义一套标准例程,比较在不同DSP上的执行速度。这种例程可能是一个算法的“核心”功能,如FIR或IIR滤波器等,也可以是整个或部分应用程序(如语音编码器)。图1为使用BDTI公司的工具测试的几款DSP器件性能。在比较DSP处理器的速度时要注意其所标榜的MOPS(百万次操作每秒)和MFLOPS(百万次浮点操作每秒)参数,因为不同的厂商对“操作”的理解不一样,指标的意义也不一样。例如,某些处理器能同时进行浮点乘法操作和浮点加法操作,因而标榜其产品的MFLOPS为MIPS的两倍。其次,在比较处理器时钟速率时,DSP的输入时钟可能与其指令速率一样,也可能是指令速率的两倍到四倍,不同的处理器可能不一样。另外,许多DSP具有时钟倍频器或锁相环,可以使用外部低频时钟产生片上所需的高频时钟信号。 语音处理:语音编码、语音合成、语音识别、语音增强、语音邮件、语音储存等。图像/图形:二维和三维图形处理、图像压缩与传输、图像识别、动画、机器人视觉、多媒体、电子地图、图像增强等。军事;保密通信、雷达处理、声呐处理、导航、全球定位、跳频电台、搜索和反搜索等。仪器仪表:频谱分析、函数发生、数据采集、地震处理等。自动控制:控制、深空作业、自动驾驶、机器人控制、磁盘控制等。医疗:助听、超声设备、诊断工具、病人监护、心电图等。家用电器:数字音响、数字电视、可视电话、音乐合成、音调控制、玩具与游戏等。生物医学信号处理举例:CT:计算机X射线断层摄影装置。(其中发明头颅CT英国EMI公司的豪斯菲尔德获诺贝尔奖。)CAT:计算机X射线空间重建装置。出现全身扫描,心脏活动立体图形,脑肿瘤异物,人体躯干图像重建。心电图分析。 DSP的性能受其对存储器子系统的管理能力的影响。如前所述,MAC和其它一些信号处理功能是DSP器件信号处理的基本能力,快速MAC执行能力要求在每个指令周期从存储器读取一个指令字和两个数据字。有多种方法实现这种读取,包括多接口存储器(允许在每个指令周期内对存储器多次访问)、分离指令和数据存储器(“哈佛”结构及其派生类)以及指令缓存(允许从缓存读取指令而不是存储器,从而将存储器空闲出来用作数据读取)。图2和图3显示了哈佛存储器结构与很多微控制器采用的“冯·诺曼”结构的差别。另外要注意所支持的存储器空间的大小。许多定点DSP的主要目标市场是嵌入式应用系统,在这种应用中存储器一般较小,所以这种DSP器件具有小到中等片上存储器(4K到64K字左右),备有窄的外部数据总线。另外,绝大多数定点DSP的地址总线小于或等于16位,因而可外接的存储器空间受到限制。一些浮点DSP的片上存储器很小,甚至没有,但外部数据总线宽。例如TI公司的TMS320C30只有6K片上存储器,外部总线为24位,13位外部地址总线。而ADI的ADSP2-21060具有4Mb的片上存储器,可以多种方式划分为程序存储器和数据存储器。选择DSP时,需要根据具体应用对存储空间大小以及对外部总线的要求来选择。 DSP处理器和诸如英特尔、奔腾或PowerPC的通用处理器(GPPs)有很大的区别,这些区别产生于DSPs的结构和指令是专门针对信号处理而设计和开发的,它具有以下特点。·硬件乘法累加操作(MACs)为了有效完成诸如信号滤波的乘法累加运算,处理器必需进行有效的乘法操作。GPPs起初并不是为繁重的乘法操作设计的,把DSPs同早期的GPPs区别开来的第一个重大技术改进就是添加了能够进行单周期乘法操作的专门硬件和明确的MAC指令。·哈佛结构传统的GPPs使用冯.诺曼存储结构,在这种结构中,有一个存储空间通过两条总线(一条地址总线和一条数据总线)连接到处理器内核,这种结构不能满足MAC必须在一个指令周期中对存储器进行四次访门的要求。DSPs一般使用哈佛结构,在哈佛结构中,有两个存储空间:程序存储空间和数据存储空间。处理器内核通过两套总线与这些存储空间相连,允许对存储器同时进行两访问,这种安排使处理器的带宽加倍。在哈佛结构中,有时通过增加第二个数据存储空间和总线来实现更大的存储带宽。现代高性能GPPs通常具有两个片上超高速缓冲存储器一个存放数据,一个存放指令。从理论的角度上讲,这种双重片上高速缓存与总线连接等同于哈佛结构,但是,GPPs使用控制逻辑来确定哪些数据和指令字驻留在片上高速缓存里,这个过程通常不为程序设计者所见,而在DSPs里,程序设计者能明确的控制哪些数据和指令被存储在片上的存储单元或缓存中。·零消耗循环控制DSP算法的共同特征:大部分处理时间花在执行包含在相对小循环内的少量指令上。因此,大部分DSP处理器具有零消耗循环控制的专门硬件。零消耗循环是指处理器不用花时间测试循环计数器的值就能执行一组指令的循环,硬件完成循环跳转和循环计数器的衰减。有些DSPs还通过一条指令的超高速缓存实现高速的单指令循环。·特殊寻址模式DSPs经常包含有专门的地址产生器,它能产生信号处理算法需要的特殊寻址,如循环寻址和位翻转寻址。循环寻址对应于流水FIR滤波算法,位翻转寻址对应于FFT算法。·执行时间的可预测性大多数DSP应用都具有硬性实时要求,在每种情况下所有处理工作都必须在指定时间内完成。这种实时限制要求程序设计者确定每个样本究竟需要多少时间或者在最坏情况下至少用去多少时间。DSPs执行程序的进程对程序员来说是透明的,因此很容易预测处理每项工作的执行时间。但是,对于高性能GPPs来说,由于大量超高速数据和程序缓存的使用,动态分配程序,因此执行时间的预测变得复杂和困难。·具有丰富的外设DSPs具有DMA、串口、Link口、定时器等外设。
数字信号处理中序列都是离散的吗
数字信号指自变量是离散的、因变量也是离散的信号,这种信号的自变量用整数表示,因变量用有限数字中的一个数字来表示。在计算机中,数字信号的大小常用有限位的二进制数表示,例如,字长为2位的二进制数可表示4种大小的数字信号,它们是00、01、10和11;若信号的变化范围在-1~1,则这4个二进制数可表示4段数字范围,即[-1, -0.5)、[-0.5, 0)、[0, 0.5)和[0.5, 1]。