什么时候是等价无穷小 等价无穷小的公式怎么用
什么时候求极限可以用等价无穷小替换,是不是只有以下三种情况?另外第三种情况是什么意思?谢啦?求极限时什么时候适合用等价无穷小?什么时候可以用等价无穷小? 只要是乘除之中就可以用吗?请教:什么时候可以用等价无穷小?求问什么时候可以用等价无穷小?请问什么时候能用等价无穷小,例如下图所示?
本文导航
用左右极限证明极限的例题及答案
是啊。x趋于0时候,求极限,可以运用等价无穷小来求解。x趋于0时候,求f(x²/sin²x)也可以使用等价无穷小求解。x²和sin²x是等价无穷小,所以可以求得函数的极限。
等价无穷小:高数中常用于求x趋于0时候极限,当然,x趋于无穷的时候也可求,转化成倒数即成为等价无穷小。
拓展资料
常用等价无穷小:x趋于0时,x和sinx是等价无穷小;sinx和tanx是等价无穷小;tanx和ln(1+x)是等价无穷小;ln(1+x)和e^x-1是等价无穷小;e^x-1和arcsinx、arctanx是等价无穷小;等价无穷小,可以用乘法,但是不能互相加减,否则误差会增大到不可接受的地步。
极限与无穷小的关系怎么用
加减项中如果每一项都是无穷小,各自用等价无穷小替换以后得到的结果不是0,则是可以替换的。用泰勒公式求极限就是基于这种思想。
当x→0,且x≠0,则
x~sinx~tanx~arcsinx~arctanx;
x~ln(1+x)~(e^x-1);
(1-cosx)~x*x/2;
[(1+x)^n-1]~nx;
loga(1+x)~x/lna;
a的x次方~xlna;
(1+x)的1/n次方~1/nx(n为正整数);
注:^ 是乘方,~是等价于,这是我做题的时候总结出来的。
扩展资料:
求极限时使用等价无穷小的条件:
1、被代换的量,在去极限的时候极限值为0。
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别的什么数)时,函数值f(x)与零无限接近,即f(x)=0,则称f(x)为当x→x0时的无穷小量。
参考资料来源:百度百科——等价无穷小
等价无穷小在积分里都可以替换么
等价无穷小代换不能随便乱用,一般来说,如果该项是参与乘法或者除法运算的话就可以用,例如
lim[x->0,ln(1+x)/sinx]
这时ln(1+x)是x的等价无穷小,sinx是x的等价无穷小,所以都可以换过来
lim[x->0,ln(1+x)/sinx]=lim[x->0,x/x]=1.
如果是参加加法减法甚至是乘幂等运算,这时视情况而定,但是,对于数学来说,如果一种方法有时有效,有时失效的话,就最好不要用,否则很容易出错,例如
lim[x->0,(x-sinx)/x^3]
如果把sinx换成x,得到极限值为0,那就错了,你用两次洛比达法则可以求一下这个极限
lim[x->0,(x-sinx)/x^3]=lim[x->0,(1-cosx)/(3x^2)]=lim[x->0,sinx/(6x)]=1/6
至于你的题目,替换也是可以的,但严格的解题,最好直接用洛比达法则求,这时分母里面的(1-cosx)与x^2/2是等价无穷小(x->0),可以替换.
等价无穷小适用于无穷大吗
①被代换的量,在取极限的时候极限值不为0;
②被代换的量作为加减的元素时就不可以使用,作为被乘或者被除的元素时可以用等价无穷小代换。
无穷小相当于泰勒公式展开到第一项,基本什么时候都可以用,应用条件是:等价代换的需为整个式子的因子,而不能部分代换。
等价无穷小数学分析的基础概念。它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值)。
极限方法是数学分析用以研究函数的基本方法,分析的各种基本概念(连续、微分、积分和级数)都是建立在极限概念的基础之上,然后才有分析的全部理论、计算和应用.所以极限概念的精确定义是十分必要的,它是涉及分析的理论和计算是否可靠的根本问题。
扩展资料:
柯西(Cauchy,A.-L.)首先较为明确地给出了极限的一般定义。他说,“当为同一个变量所有的一系列值无限趋近于某个定值,并且最终与它的差要多小就有多小”(《分析教程》,1821),这个定值就称为这个变量的极限。
其后,外尔斯特拉斯(Weierstrass,K.(T.W.))按照这个思想给出严格定量的极限定义,这就是现在数学分析中使用的ε-δ定义或ε-Ν定义等。从此,各种极限问题才有了切实可行的判别准则。在分析学的其他学科中,极限的概念也有同样的重要性,在泛函分析和点集拓扑等学科中还有一些推广。
参考资料:等价无穷小_百度百科
等价无穷小必须单独存在吗
等价无穷小代换用于乘除运算, 不要用于加减运算。这两题都不能直接拆分。
可用泰勒级数展开(即所谓“高阶无穷小代换”), 或罗必塔法则计算之。
等价无穷小的公式怎么用
等价无穷小只能应用与因子, 比如a/b或者a*b.a和b可以用等价无穷小。
但是a+b或者a-b这种是不可以的。