大学数学论文怎么写 怎么样写大学高等数学论文啊 6000字左右
数学论文怎么写呢?▃▄▅▆▇██大学数学论文怎么写?怎么样写大学高等数学论文啊 6000字左右?大学数学论文怎么写,给篇范文。最主要是结尾如何结?
本文导航
数学论文怎么写呢?
要看你写论文的目的啊。。如果是像一般本科毕业论文之类的。也要看你自己的要求。如果是想得优秀。。那应该要有自己新的出彩的东西。如果只是为了拿良好或者及格。那没关系。基本上随便写写。或者到以前现成的文献上各处搬点过来也可以了。。。
如果是要发表啥的。。那总要有点出彩的地方才行把
这里可以给你看下我本科学校(温州大学)数学学院论文要求
毕业论文的注意事项
(2008年11月20日)
一、毕业论文的意义
1、经受科学研究的初步训练,掌握科学研究的基本方法。
2、检验学生学习质量的重要手段。
3、本科学生毕业并获得学士学位的必要条件。
二、毕业论文的基本要求
1、论文任务书(由指导教师填写)
教师负责向学生讲解任务书中所规定的论文具体要求和目标,学生必须按任务书的要求进行论文的撰写。
2、开题报告(不少于2000字,由学生撰写)
选题的背景和意义,研究的基本内容和拟解决的主要问题,研究的方法及措施,研究工作的步骤与进度,主要参考文献等。通过上述描述可以让指导师作出判断:问题研究的价值和研究方法的可行性、题目的大小是否合适、参考资料是否充足等。
开题报告必须经指导教师签署意见及学院审定后才能生效。
3、文献综述(不少于2000字,由学生撰写)
由学生通过系统地查阅与所选课题相关的国内外文献,进行搜集、整理、加工,从而撰写的综合性叙述和评价文章。要全面地反映与本课题直接相关的国内外研究成果和发展趋势,指出该课题所需要进一步解决的问题。
文献综述的特点是综合性、描述性、评价性。它能反映学生的文献阅读能力和综合分析能力。
文献包括社会调查与科学实验材料、平时的学习记录或读书笔记、公开发表的论文或出版的著作(主流文献)。
文献中要求至少有两篇外文文献。
4、文献翻译
翻译的英文文献要求达到10000个字符以上(或翻译成中文后至少在2000汉字以上),翻译的文献应该与所研究的课题有关。
注意:文献翻译的题目应该是被翻译文献或资料的题目,而不是论文的题目。
5、论文及其格式
整体结构
封面
目录
标题(2号黑体)
(空两行)
姓名(4号宋体)
(班级)(5号宋体)
(空一行)
摘要:(小5号宋体加黑)摘要内容(小5号宋体)
关键词:(小5号宋体加黑)词语(小5号宋体)
(空一行)
正文(宋体小四号字(英文用新罗马体12),单倍行距,页码用小五号字,文中的一些段落标题,可以用4号宋体或者加黑)
(空一行)
参考文献(5号宋体加黑)
文献标题等(5号宋体)
(空一行)
英文摘要(New Roman 10号,内容与中文摘要相同)
范文1,范文2,,范文3
论文摘要:以浓缩形式概括所研究课题的内容,要突出本课题的成果和新见解。一般不超过300字。
关键字:正文主题内容信息的单词、词组或术语。一般为3--5个。
正文:论文的核心部分(不少于8000汉字)。包括引言、对课题内容和成果的详细表述、深入的分析和周密的论证、结束语、致谢等。可分成若干段落或章节,对各章节或段落要标以小标题或序号。
参考文献:罗列正文中所援引的文献,大多按引用的顺序排列。文献的篇数一般不少于10篇,其中至少有两篇外文文献。
期刊:[序号]作者,题名[J],期刊名称,出版年月,期号
书籍:[序号]著者,书名[M],版次,出版社,出版年月,起止页码
论文集: [序号]作者,题名[C]。见:编者,文集名,出版者,出版年月,起止页码.
三、论文工作程序
1、选题(11月20日至12月15日),分三轮进行。选题网址:
http://www.wzumath.com/lw
经过三轮师生双向选题确定论题和指导师:
11月21日至11月30日第一轮选题
12月1日至12月10日第二轮选题
12月11日至12月15日第三轮选题
在每轮选题期间,每位学生至多预选两个论题,并且要及时与相关指导老师联系并商定,防止选题无效。确定题目和指导师后请及时告知学院办公室(龚老师),以免影响其他同学选题。
学生也可自选论题,但应及时与相关教师商讨确定。
三论选题后仍没有确定题目的同学将由学院指定。
12月16至12月20日由学院调整汇总并最后确定,论文研讨方向和指导师确定后,不得随意更改和变动。
2、任务书和开题报告
08年12月下旬由指导教师向学生下达论文任务书,学生接到任务书后,开始搜集查阅文献资料,并在教师的指导下开始撰写开题报告。
09年3月10日前完成开题报告以班级为单位上交学院教学办公室。
3、文献综述和文献翻译
09年3月31日前完成文献综述和文献翻译以班级为单位上交到学院教学办公室。
4、论文初稿
09年4月30日前写出论文初稿,并交给指导教师,经指导师修改后返回给学生。在此前后应随时与指导师保持联系,当面听取指导师的意见,对论文进行2到3次修改。
5、论文正稿
09年5月22日前完成论文正稿,用A4纸打印,加封面和目录装订成册,一式三份(一份自留,一份交指导师,一份以班级为单位上交到学院教学办公室)
6、纪律约束
在整个论文工作期间,学生与指导师必须保持密切联系,至少有6次接受指导师的面授指导。
若学生没有按期完成某个阶段的工作,则必须提交书面理由,指导师给出初步意见,由学位委员会决定是否影响其毕业论文的成绩。
填写工作记录卡
7、答辩
09年5月30日进行论文答辩,所有学生和指导师都要参加。
▃▄▅▆▇██大学数学论文怎么写
什么是解题能力?构成解题能力的基本要素有哪些?它是怎样形成发展的?
长期以来,正是由于对这些基本理论问题无法作出明确回答,才使得应用题教学难以有突破性的发展,使得应用题教学心理研究长期陷于困顿。显然,要改革当前应用题教学体制,优化应用题教学系统,推进应用题教学心理研究,就必须首先在理论上揭示小学生解题能力的实质、构成要素及形成发展规律。本文试作探讨。
长期以来,应用题教学心理研究虽对解题能力的实质没有作出明确回答,但纵观哲学与心理学文献,有关能力问题的讨论已有了相当长的历史。这些有关一 般能力的基本观点,影响着人们对解题能力的基本看法。人们关于解题能力实质的日常看法,大致可以分为四类。
1.因素论观点。
把解题能力看作是某些一般能力因素(如理解能力、分析能力、综合能力、运算能力等)的综合体,试图通过对解题能力的因素分析或经验分析,探讨影响解题活动的一般能力因素。
2.先验论观点。
解题能力是与个体经验无关,并先于个体经验而存在的实体,把能力看作是主宰活动的非物质心理实体的官能,或把它看作是遗传而来的个人禀赋。
3.经验论观点。
经验论观点与先验论观点相对,解题能力是个体在解题过程中习得的知识经验,提出解题能力即解题知识。
4.“合金”论观点。
从对能力形成发展条件的研究出发,认为解题能力是先天秉赋和后天解题活动成果的融合物(亦即“合金”)。
上述四种观点能否正确反映解题能力的实质呢?
本文认为,首先,解题能力属于特殊能力。根据唯物辩证法,一般能力虽然大致地概括了特殊能力,但却不能完全代替特殊能力。因素论观点用一般能力来界定特殊能力的本质,否认了特殊能力的特殊本性及其形成发展的特殊规律,因而并不能正确地揭示解题能力的实质。该论点反映在教学上,实质是形式训练说的翻版,导致了教师用一般能力的训练取代解题能力这一特殊能力的培养。第二,解题能力在本性上是调节解题活动的个体心理特性,按照辩证唯物主义观点,个体心理特性虽不完全排斥生理因素或先天因素对能力形成、发展的影响作用,但究其本性则是人类有机体与环境相互作用过程中,通过主体能力的反映活动,在头脑里构建起来的心理形成物,属于经验范畴。先验论观点把解题能力看成是先天的、固定不变的实体,夸大了遗传在能力发展中的作用,因而常常把学生解题能力的暂时低下看成是该学生无法提高能力的根据,这种唯心主义和形而上学论断在教学中是十分有害的。第三,解题能力作为个体心理特性,对解题活动的调节应该具有一定的稳定性。经验论观点不仅抹煞了解题知识与技能的不同调节作用,缩小了能力实质的内涵,而且忽视了能力作为活动调节机制的稳定性能,把能力简化成了知识实在。该观点在教学中表现为教师以解题知识的传授代替对学生解题能力的培养,直接影响了应用题教学的效能。第四,对能力形成、发展条件的认识不同于关于能力实质的观点,前者要解决的是影响能力的形成、发展因素的问题,而后者要解决的是能力是什么的问题。“合金”论观点虽然较好地解决了能力形成、发展的条件问题,却并没有揭示出解题能力的真正实质。
那么,解题能力的实质到底是什么呢?
我认为,解题能力是解题活动稳定的调节机制。就其本质而言,是类化了的解题经验,即概括化、系统化的解题知识和解题技能。我把这一对解题能力实质的基本观点简称为类化经验观点。解题能力实质的类化经验观大致包含了以下几个含义:①从本性上说,小学生解题能力是一种个体心理特性,因而在原则上属于经验范畴;②从功能上说,小学生解题能力是解题活动的内在调节机制;③从结构上说,它是解题知识和技能组成的经验实体;④从性能上说,它对解题活动的调节具有稳定性,因而是一种类化经验,即概括化、系统化的解题经验;⑤从类别上说,它是解题这一特殊活动的内在调节机制,属于特殊的数学能力。
要全面认识解题能力的实质,还必须看到,小学生解题能力并非是单一的类化经验,而是一个由不同层次和不同类型解题能力组成的层级系统。在这个层级系统中,按所调节的活动对象的复杂性和数量性质的不同,包括简单应用题、复合应用题和分数应用题三个不同层次的解题能力。这些能力在经验的概括水平上存在明显差异。按所调节活动类型的不同,每一层次的解题能力又包含了算术法和代数法两种不同类型的解题能力,它们在经验的概括水平上大致相仿,但在经验的构成要素上却有所不同。这些不同层次、不同类型的解题能力,究其实质仍是类化经验,只是经验的含义有所变化。因此,解题能力的层级系统实质是类化经验的层级系统。
在树立了解题能力的类化经验观和层级系统观的基础上,为深化解题能力的认识,为应用题教学改革提供更多、更具体的指导,还必须对能力的构成要素作进一步的分析,确定构成能力的具体知识和技能成分。
怎么样写大学高等数学论文啊 6000字左右
大学数学论文好写啊,先小小的开下头,这里大概就有300+的字了,在浅谈数学的发展史大概就有1000+的字了,在谈论一下数学的解析的方法,大概就有1000+的字,在谈论一下怎么学习数学,大概就有1000+的字。最后谈论下自己对于数学这门课的理解和看法,差不多也就1000+的字了
现在来看的话也就300+1000+1000+1000+1000=4300的字数了。你在中间的地方插入一些在生活中,将来的工作中得数学应用,举1到2各例子,这样差不多也就一千五六百得字数了,这样就有6000+的数学论文了。
大学数学论文怎么写,给篇范文。最主要是结尾如何结
一定要有题目,作者名字,通讯地址,邮编,摘要关键词,正文,参考文献,最好还要有英文的Keyword与 Abstract ,范文随便上网找,结尾要有参考文献。关于条件极值的探讨(图片打不上,呵呵)俊聪 (应用数学学院,应用数学专业,08级)摘要 本文主要类比了无条件极值的判别法,讨论了条件极值是否拥有与无条件极值类似的判别法。通过利用黑赛矩阵与二阶微分,得出了怎样求条件极值和极值点的有效方法,并且得出了无条件极值所满足的判别法不是都适应条件极值的。关键词 条件极植一熟悉的条件极值判别法在研究数学问题时,有时会遇到与极值有关的问题,而我们常见的有无条件极值与条件极值。对于无条件极值,我们都有非常熟悉的判别法:若二元函数f在点的某个邻域U()内具有二阶连续偏导数,且是f的稳定点,则有:(1) 当>0,>0时,黑赛矩阵是正定的,f在点取得极小值;(2) 当<0, >0时,黑赛矩阵是负定的,f在点取得极大值;(3) 当<0时,黑赛矩阵是不定的,f在点不能取得极值;(4) 当=0时,黑赛矩阵是半定的,不能肯定f在点是否取得极值。因此,我们可以类比无条件极值,探讨条件极值,看它是否也满足上面的四条判别法。二 有关条件极值的一个定理为了研究上面的问题,我们首先给出一个常用定理:首先,这个定理需要条件:在的限制下,要求目标函数的极值。则有定理:设在满足上面的限制下,求函数的极值问题,其中与在区域D内有连续的一阶的偏导数。若D的内点是上述问题的极值点,且雅可比矩阵的秩为m,则存在m个常数,使得为拉格朗日函数的稳定点,即为下述n+m个方程的解。三 分析讨论以上问题通过引入上面的定理,我们可以得到它的稳定点,而我们接下来考虑的是条件极值能否在稳定点处取得极值,且如果取得极值,它取得的是极大值还是极小值。我们在这里还需用到黑赛矩阵。设是F的稳定点。令,并且使固定,考虑在点的黑赛矩阵此时,分类讨论:1当是正定的或负定的。这是是的极值点。而我们限制了。因此也是的相应的条件极值点。2当是不定的或半正定的或半负定的。这是可能不是的极值点,但也有可能是的极值点。我们可以通过,。求出,,…,,,…,之间的关系,得到,…,的二次型如果此时其系数矩阵是正定的,则是的极小值点;如果是负定的,则是的极大值点。通过以上分析,我们就可以得出一个重要的结论:条件极值类比与无条件极值第一,二条是成立的,对于第四条是不适应的,对于第三条虽然开始也无法判断,但可以找到其他途径,求出是否有极值。四 实例分析我们首先举出一个例子:已知f(x,y,z)=x+y+z,求它在限制条件xyz=下的极值点。解:根据题意,我们首先设F(x,y,z,)=f(x,y,z)+ (xyz-)接着,我们算dF(x,y,z,)=0,从而解得x=y=z=c, =如果c=0,则可得f(x,y,z)在xyz=下无极值点当c0时,则在=,=(c,c,c)处,有=此时此矩阵不是正定的,也不是负定的。再对xyz-=0求微分,在=(c,c,c)处,解得dz=-dx-dy,代入得=(dxdy+dydz+dzdx)=(——dxdy—)=当c>0时,正定,(c,c,c)为极小值点,当c<0, 负定,(c,c,c)为极大值点。因此,通过这个例子,我们在不能判断黑赛矩阵是正定还是负定的情况下,可以通过适当的转化使极值点求出来。其实,我们也可以通过其他类似的方法来求有关条件极值的有关问题。例如,我们可以用二阶微分的方法来求条件极值。对于二阶微分,有公式:我们通过举个例子来加以说明。已知f=xyz,求它在限制条件下的极值。解:令F(x,y,z,)= xyz+ ()求dF=0,则=yz+2x=0 =xz+2y=0 =xy+2z=0 =0则可以解得八个稳定点当=—时,有稳定点(1,1,1),(1,—1,—1), (—1,—1,1), (—1,1,—1)当 =时,有稳定点 (1,1,—1),(—1,—1.—1),(—1,1,1), (1,—1,1)则dF=(yz+2x)dx+(xz+2y)dy+(xy+2z)dz=我们首先来判断点 (1,1,1)是否为极值点,求出稳定点 的微分dz=—dx—dy,且(,)=—+=——+2(dx+dy)dz,把dz=—dx—dy带进去,得(,)=———2<0,则可得(1,1,1)是极大值点,同理可得(1,—1,—1), (—1,—1,1), (—1,1,—1)是极大值点,而(1,1,—1),(—1,—1.—1),(—1,1,1), (1,—1,1)都是极小值点,进而我们可求出此时极大值点所对应的极值都为1,极小值点所对应的极值都为—1,从而得解。[参考文献][1] 华东师范大学数学系 数学分析下册 第三版[M]高等教育出版社 2001[2]孙振绮 丁效华 工科数学分析例题与习题下册[M]机械工业出版社 2008