怎么判断二元函数偏导 关于二元函数求偏导数的问题
关于二元函数求偏导数的问题,怎么看一个二元函数是否可导(偏导)?如何确定二元函数偏导数是否存在?给定一个二元函数怎么判断是否连续偏导数是否存在?二元函数偏导连续怎么证明?
本文导航
关于二元函数求偏导数的问题
设二元函数f(x,y)=3x^2+6y^3+5xy+10x^3y^2+8
1、对x求偏导:把x当做未知数,y当做常数,即得fx=6x+5y+30x^2y^2
2、对y求偏导:把y当做未知数,x当做常数,即得fy=18y^2+5x+20x^3
上面求的是一阶偏导数,二阶偏导数同样的道理,只不过在一阶偏导数的基础上进行的
怎么看一个二元函数是否可导(偏导)?
1、本题的计算方法是运用极坐标方法;
2、由于极限的结果与角度有关,也就是与方向有关,
; ;所以本题的二元函数在原点是撕裂的。
2、既不连续,也不可导。答案是B。
如何确定二元函数偏导数是否存在
首先偏导数连续是可微的充分条件,偏导数存在是可微的必要条件,也就是说存在一些偏导数不连续的函数但仍可微,也存在一些偏导数存在的函数但不可微,而可微一定连续(连续不一定可微),所以从偏导数存在是得不出函数连续的,按照上面的分析,你写的那三条当然都是不能逆向推理的.事实上偏导数连续虽然能推出函数连续,但条件过强,而偏导数存在这个条件又由于太弱从而推不出函数连续,比较“适中”的条件是,偏导数在一点的某个邻域内有界,则函数在该点连续,这是一个定理.以上说的那些不能推出的,都是有反例的,有兴趣的话你可以自己在书上找找.
给定一个二元函数怎么判断是否连续偏导数是否存在
首先偏导数连续是可微的充分条件,偏导数存在是可微的必要条件,也就是说存在一些偏导数不连续的函数但仍可微,也存在一些偏导数存在的函数但不可微,而可微一定连续(连续不一定可微),所以从偏导数存在是得不出函数连续的,按照上面的分析,你写的那三条当然都是不能逆向推理的.事实上偏导数连续虽然能推出函数连续,但条件过强,而偏导数存在这个条件又由于太弱从而推不出函数连续,比较“适中”的条件是,偏导数在一点的某个邻域内有界,则函数在该点连续,这是一个定理.以上说的那些不能推出的,都是有反例的,有兴趣的话你可以自己在书上找找.
二元函数偏导连续怎么证明
二元函数偏导连续的证明方法是对开区间连续可导的分段可直接求出其偏导数,再对分段点用定义法求出其偏导数值或者判断其不存在,由此即可判断在分段点偏导数是否连续。
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发。