873线性代数是什么意思 考研武大难不难
考研武大数学系问题,线性代数这一步是什么意思?线性代数通俗解释,线性代数的线性究竟是什么意思?线性代数这句话是什么意思?什么是线性代数??
本文导航
考研武大难不难
武大数学系考研的科目为:
(101)思想政治理论;
(201)英语一;
(653)数学分析 ;
(873)线性代数 。
武大数学系考研可以选择报考的专业有:
070101 基础数学;
070102 计算数学;
070103 概率论与数理统计;
070104 应用数学。
线性代数是怎么建立起来的
线性代数是一步步的数学推理,逐步演算出来的,里边包含着逻辑和数学的美。一、含义线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。二、内涵线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。三、起源线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。“鸡兔同笼”问题实际上就是一个简单的线性方程组求解的问题。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。
线性代数的基础知识总结
函数研究的是,输入一个数,经过函数运算之后,产出一个数。而有时候我们研究的问题太复杂,需要输入很多个数,经过运算之后,产出很多个数。这时候,线性代数应运而生。
很多个数,我们可以用括号括起来,形成一个数组。在几何学上,数组被称作向量,向量就是一个有大小有方向的直线段。
所以,线性代数就是:输入一段直线,经过加工之后,产出一段直线。
线性的意思就是,你往机器里扔进去直线,产出的肯定也是直线。
当然,在数学上,线性有着及其严格的定义,并不是像我刚才说的那么简单。不过,正由于线性的严格定义,才能够实现:输入一段直线,产出一段直线。
与函数相类似,用图描述线性代数就是:
输入叫向量,内部原理叫矩阵,输出叫向量。
2, 矩阵是怎么对直线进行加工的?
通过函数表达式y=5x+9我们可以一目了然地知道,输入的自变量x是怎样一步步被加工,最后输出因变量y的。
同样,我们通过观察矩阵,也可以一目了然地知道,输入的直线是怎样一步步被加工的。
假如输入的直线为[1,2]。
插一句,向量[1,2]的全称其实是1i+2j,i和j叫做基向量。意思是说,我们目前所写出来的向量,是以这两个向量作为基本原料,拼凑组合出来的。
假如用于加工向量的矩阵为[0,1 -1,0],
那么这个矩阵所代表的加工过程就是,把基向量i,换成矩阵中的第一列,把基向量j换成矩阵中的第二列。然后再以新的基向量为原料,重新利用[1,2]拼凑一个新的向量。用新的基向量拼凑出来的新向量就是输出。
通过展示矩阵对向量的加工过程,我们可以“看出”上面例子的解。
下面,我们用熟悉的口诀“左行乘右列”来检验一下上面的答案是否靠谱。
其实,计算所用的口诀就来源于上述加工过程。
数学线性和非线性的区别通俗易懂
平面上的直线方程是y=ax+b,就是x的一次多项式。可以这样理解,线性就是一次,运算中只有加法和数乘,不出现平方,开方等其他运算。
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
学术地位
线性代数在数学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位。在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分。
线性代数所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系。
各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以被计算出来,线性代数正是解决这些问题的有力工具。线性代数的计算方法也是计算数学里一个很重要的内容。
线性代数是算什么东西
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。【摘要】
什么是线性代数?!【提问】
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。【回答】
线性代数 本质
线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。【摘要】
线性代数线性代数【提问】
您好【回答】
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。【回答】
线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。【回答】
请问还有能帮助你的吗【回答】
不介意的话,动一动小手,给一个赞,祝你生活愉快【回答】