实变函数用英语怎么说 七门学科分别用英语怎么写
麻烦一下英语高手!有几个专业词汇请教一下,几门大学数学学科的英文表述怎么说,谢谢哈!?帮我翻译几段英文,英语翻译成中文 内容为数学物理考纲,“数学物理方程”“高等代数”“数学分析”“数值分析”这几科的英文名怎么翻译?要专业的,急?数学系课程名称 英文翻译,谢谢。
本文导航
请教一个简单的英语语法问题
数学分析:Mathematical analysis
高等代数:Advanced algebra
空间解析几何:Space analytic geometry
离散数学 Discrete mathematics
数据结构 Construction of data
复变函数 Complex variable function
实变函数 Real variable function
数值分析 Numerical analysis
最优化设计 Optimized design
运筹学 Operations research
大学物理University physics
七门学科分别用英语怎么写
常微分方程 Ordinary Differentical Equations
复变函数 Complex Functions
概率论与数理统计 Probability Theory & Mathematical Statistics
数据结构 Data Structures
实变函数 Functions of Real Variable
偏微分方程 Partial Differential Equations
数学试验 Mathematics Experiments
微分几何 Differential Geometry
数学模型 Mathematical Models
分析选讲 Selected Lectures on Analysis
代数选讲 Selected Lectures on Algebra
泛函分析 Functional Analysis
帮我翻译英语
Main course: mathematical analysis, advanced algebra and analytic geometry, University physics, ordinary differential equations, complex function, probability theory and mathematical statistics (including random process), planning and optimization, mathematical models, computer with theory, discrete mathematics, C / C + + programming, Java programming, data structures and algorithms, database theory, software engineering, information theory foundation, numerical analysis, Real Variable Function and functional analysis, mathematical physics equations, computer networks and security.
Computer level: C programming language, operating systems, computer networks, databases Principle
English levels: basic skills: listening, speaking, reading and writing ability through CET4 (are efforts to CET-6!) Major social practice: many times and the business community for major companies in the communication and cooperation, in April 2007 to School "knowledge contest" based on the successful cooperation with China Mobile to help the company explore China Mobile in the city-letter business, enabling the company to fly letter surge of users.
August 08 to participate as volunteers in the Olympic Games to the Olympics in the past, during the completion of the outstanding volunteer work by the Department of BOCOG volunteers praise.
Awards: the "advanced military training for the individual"; organizations Pieces school English game, and served as actor, the "third place" was "outstanding young volunteers" of the "summer social practice advanced individual" was "the best students Cadres "of the organizations scheduled to participate in group calisthenics School Games track and field performances, the" Best Organization Award "by the" Top Ten students, "the title, all won only 10 students; was" school scholarships "of the" Challenge Cup "Venture Competition Second prize, the economic sector the attention of the people;
Elected as the 29th Beijing Olympic Games was "school scholarships."
Self-recommendation: have strong communication skills and judgement and organizational abilities, attitudes, serious and decisive in distress, clear objectives, with clear performance standards.
Undergraduate courses because of the settings, I have a good foundation for mathematics, computer programming and strong ability to skillfully use the C programming language, MATLAB software and software OFFICE. Professional root in good shape at the same time, I also paid great attention to their overall quality of the training, in-school period, successively served as member of the class organizations, school students Wai Lianbu Director-General, the President of the Student Union, Vice-Chairman, and other job-school students, or cooperative organizations A series of large-scale social activities, a strong team spirit and organization and coordination of various types of Foreign Affairs to discuss cooperation activities.
In the school study and practice, not just access to the expertise and, more importantly, is a search and gain new knowledge and new information. I am confident that, I have the ability to work to achieve good results in the creation of value for your company at the same time, but also realize their value.
School performance: During the study, independent study and research ability in connection with work, good teamwork and organizational coordination. Life, the human being modest and prudent and optimistic about the expansive, towards others.
这是我的翻译!谢谢!
英语翻译题目一览表
楼上机器翻译不准确。
如下:
初等逻辑和代数 :
命题演算,量词。归谬法。
集合和函数术语,整数、自然数、有理数集合;排列组合
多项式:欧几里德除法
实数集合的性质:
区间,邻域,上界。
数列:极限(柯西准则),收敛速度,形如 un+1 = f(un)的递归.
实变量数值函数:极限和连续性,可微,有限增量公式,单调和反函数,泰勒公式和不等式,有限扩张,常见函数。
复数域:常见复函数(指数函数 等).
线性代数:
向量空间,线性映射,基和维数。矩阵,行列式,线性系统。特征值和特征向量,特征多项式,对角化。微分系统的应用和方程式。
分析 :
有理函数及其分解,基本计算:有限区间的积分,数值方法。带积分余项的泰勒公式。二维、三维实坐标系下的矢量函数(不包括度量性质)。二维、三维实坐标系下的含参曲线。一,二阶线性微分方程。沿线积分。
数列:
实变函数:函数数列和级数,整级数,傅里叶级数的应用。简单收敛、绝对收敛、一致收敛。实区间上的积分,含参积分。(傅立叶,拉普拉斯级数的应用和例子)。
数值和矢量分析:
微分:多变量函数。偏导数和切线的应用。二元泰勒公式:适用局部极值。 2或3重多重积分。连续积分的计算和坐标变换公式。
有限维欧几里德空间 :
标量的积,范数,标准正交基和正交化。伴随阵,厄米特阵,一般单运算符。二维线性空间介绍。二维线性空间的正交基,勒让德多项式,三角函数基础。傅里叶级数的应用。傅立叶变换:Plancherel平等(这个Plan。。。不知道具体是什么 你应该了解吧 呵呵)。
翻完了 祝好!
数学中定值的英文缩写
我是数学系的,我先跟你介绍一下我们数学主干课程安排:
第一学年:数学分析(1,2)、解析几何、高等代数
第二学年:数学分析(3)、常微分方程、复变函数、微分几何、概率论与数理统计、运筹学
第三学年:数学物理方程、数学模型与数学试验、matlab与mathematica软件、数值分析、时间序列分析、近世代数、拓扑学、实变函数与泛函分析、现代分析选讲
第四学年:偏微分方程数值解、多元统计分析、矩阵分析。
然后谈谈一下我的个人看法:
进入大学数学系课程的学习,首先是要学好‘数学分析’和‘高等代数’,这是进入大学数学的两个门槛,我觉得怎么重视也不过分,这两门课学好了,就为后续课程铺好了路。
你说到知识的系统性,我觉得下几门课程比较重要:
分析:数分、复变、常微、偏微
代数:高代、近世代数
几何:解析几何、微分几何
不确定科学:概率统计、随机过程。
近现代数学三大基础:实变函数、泛函分析、拓扑学。
这些都是基础,有了这些基础,你可以挑选你喜欢的方向深入学习。:基础数学中有,数论、代数学、几何学、拓扑学、函数论、偏微分方程等。
应用数学中有,运筹学、控制论等。计算机数学中有偏微分方程数值计算、非线性微分方程及其数值解、有限元边界元数值方法等。
后面课程中我觉得有顺序的课程是:
先学复变和常微,再学偏微
先学实变,再学泛函
先学概统,再学时间序列和多元统计
先学数值分析,再学偏微分数值解
其他感觉依赖性不是很强
然后再跟你推荐几本教材,有的是公认的经典,要想学好数学值得读一读:
数学分析
(经典):菲赫金哥尔茨(俄) 微积分基本教程(三卷)walter rudin的《数学分析原理》(用近现代数学语言写的,内容精炼)
吉米多维其 数学分析习题集
(个人):徐森林 数学分析(三册)
裴礼文 数学分析中的典型问题和方法
伯克利数学问题集
高等代数
丘维声 高等代数(上,下)
张贤科 许甫华 清华大学 高等代数(在一般域上讲的,内容深厚)
概率
费勒 概率论及其应用
时间序列
George E.P.Box等 时间序列分析:预测与控制
方程
柯朗,希尔伯特 数学物理方法
丁同仁 李承治 常微分方程教程
抽象代数
Serge Lang Algebra
实变泛函
柯尔莫戈洛夫 函数论与泛函分析初步
拓扑
芒克里斯 拓扑学
徐森林 点集拓扑学
就说这么多了,希望对你有帮助
以后可以多多交流。
主修数学与应用数学英文翻译
Mathematical analysis数学分析
advanced algebra高等代数
analytic geometry解析几何
ordinary differential equations常微分方程
probability theory概率论
C language programming C语言程序设计
complex function复变函数
Real Variable Function实变函数
numerical approximation数值逼近
mathematical modeling数学建模
abstract algebra抽象代数
functional analysis泛函分析
data structures数据结构
mathematical statistics数理统计
numerical algebra数值代数
mathematical software数学软件
partial differential equations偏微分方程
stochastic processes随机过程
optimization theory最优化理论
computer graphics计算机图形学
numerical solution of differential equations微分方程数值解
science-based information信息科学基础