什么是统计效力 统计的三种方法
如何提高统计效力?影响统计效力的因素有哪些,下列哪些方法对提高统计效力没有帮助,为什么要对相关系数进行显著性检验?显著性检验是对谁进行检验?sig.=0.000说明了什么呢?为什么要对相关系数进行显著性检验?如何判断差异有统计学意义?怎样解释?
本文导航
统计的三种方法
用统计软件协助
上金山卫士里的软件管理搜索还有推荐列表,下载试试~
选择统计方法需要考虑哪些因素
具体点。统计方法不同,对象不同。因素不同。
提高统计学检验效率最佳做法是
B,统计检验力为1-β α和β在其他条件一定的情况下不能同时增大或减小 显著性越高统计检验力越大单侧检验变相的提高了显著性,增大样本容量,在α和其他条件不变的情况下β会减小。
怎么样进行相关系数的显著性检验
1、原因:
进行显著性检验进行显著性检验是为了消除第一类错误和第二类错误。
通常情况下,α水平就是第一类错误。第一类错误是零假设为真却被错误拒绝的概率。第二类错误(;;)是零假设为误却被错误接受的概率或是研究假设为真却被拒绝的概率。如果P值小于某个事先确定的水平,理论上则拒绝零假设,反之,如果P值大于某个事先确定的水平,理论上则不拒绝零假设。
2、检验对象:
用于实验处理组与对照组或两种不同处理的效应之间
3、sig.=0.000说明:
sig=0.000说明显著性水平p值小于0.001,即相关系数在0.001水平显著。这里的0.000其实并不是说真的是等于0,如果你在这个数字上三击鼠标,可以看到真实值。
水平越小,判定显著性的证据就越充分,但是不拒绝错误零假设的风险,犯第二类错误的可能性就越大,统计效力(就越低。选择水平不可避免地要在第一类错误和第二类错误之间做出权衡。
扩展资料:
显著性检验的基本思想:
1、小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中小概率事件事实上发生了。那只能认为该事件不是来自我们假设的总体,也就是认为我们对总体所做的假设不正确 。
2、观察到的显著水平:由样本资料计算出来的检验统计量观察值所截取的尾部面积。这个概率越小,反对原假设,认为观察到的差异表明真实的差异存在的证据便越强,观察到的差异便越加理由充分地表明真实差异存在。
3、检验所用的显著水平:针对具体问题的具体特点,事先规定这个检验标准。
4、在检验的操作中,把观察到的显著性水平与作为检验标准的显著水平标准比较,小于这个标准时,得到了拒绝原假设的证据,认为样本数据表明了真实差异存在。大于这个标准时,拒绝原假设的证据不足,认为样本数据不足以表明真实差异存在。
5、检验的操作可以用稍许简便一点的作法:根据所提出的显著水平查表得到相应的值,称作临界值,直接用检验统计量的观察值与临界值作比较,观察值落在临界值所划定的尾部内,便拒绝原假设;观察值落在临界值所划定的尾部之外,则认为拒绝原假设的证据不足。
参考资料来源:百度百科--显著性检验
为什么相关系数要做双侧检验
进行显著性检验是为了消除Ⅰ类错误和Ⅱ类错误。
确定两个变量相关之后,两个变量之间的相关是否是因为偶然因素产生的,如果是因为抽样造成的,就没有必要去探究,如果不是因为机遇造成的,就说明其背后存在一个系统的因素,即必然性,这个时候我们就有必要去深究其显著性。
通常情况下,α水平属于第一类错误。第一类错误是零假设为真却被错误拒绝的概率。第二类错误(是零假设为误却被错误接受的概率或是研究假设为真却被拒绝的概率。
如果P值小于某个事先确定的水平,理论上则拒绝零假设,反之,如果P值大于某个事先确定的水平,理论上则不拒绝零假设。
扩展资料
显著度检验的六步:
(1) 研究假设H1 ,即假设两个变量之间有关,注意这里的有关是指有系统的关系,即显著关系;
(2)零假设 H0 ,又被学者称为虚无假设,即两个变量之间没有显著关系;
(3)根据变量类型选择检验方法;
(4)决定愿意承担多大的犯一类错误的风险,这与是否放弃零假设有关;
(5)根据样本计算犯一类错误的风险
一类错误:即弃真,当零假设为真时,却拒绝了零假设,二类错误:即纳伪,当零假设为假时,却接受了零假设;
(6)参照第4—5步决定是否放弃零假设
当根据样本计算的犯一类错误的风险小于愿意承担的犯一类错误的风险的时候,则接受零假设,反之则拒绝零假设。
参考资料来源:百度百科-相关系数
参考资料来源:百度百科-显著性检验
举例解释统计学差异是什么意思
统计学意义(p值)ZT结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。
通常,许多的科学领域中产生p值的结果≤0.05被认为是统计学意义的边界线,但是这显著性水平还包含了相当高的犯错可能性。结果0.05≥p>0.01被认为是具有统计学意义,而0.01≥p≥0.001被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。
相关观念
为了将统计学应用到科学,工业以及社会问题上,我们由研究母体开始。这可能是一个国家的人民,石头中的水晶,或者是某家特定工厂所生产的商品。一个母体甚至可能由许多次同样的观察程序所组成;由这种资料收集所组成的母体我们称它叫时间序列。
推论统计学被用来将资料中的数据模型化,计算它的机率并且做出对于母体的推论。这个推论可能以对/错问题的答案所呈现(假设检定),对于数字特征量的估计(估计),对于未来观察的预测,关联性的预测(相关性),或是将关系模型化(回归)。其他的模型化技术包括变异数分析(ANOVA),时间序列,以及数据挖掘。
以上内容参考:百度百科-统计学