几何测度论 是什么 测度定义的描述

七月份的尾巴2022-08-10 21:07:112475

测度论是什么?数学体系,什么是几何测度?

本文导航

测度的方法

测度理论是实变函数论的基础。

所谓测度,通俗的讲就是测量几何区域的尺度。 我们知道直线上的闭区间的测度就是通常的线段长度; 平面上一个闭圆盘 的测度就是它的面积。

对于更一般的集合,我们能不能定义测度呢? 比如直线上所有有理数构成的集合,它的测度怎么衡量呢?

一个简单的办法, 就是先在每个有理点上找一个开区间覆盖它,就好比给它带个“帽子”。因为有理数集是可列集(就是可以排像自然一样排好队,一个个数出来,也叫可数集,见集合论),所以我们可以让第n个有理数上盖的开区间长度是第一个有理数(比方是1)上盖的开区间长度的2^n分之一。 这样所有那些开区间的长度之和是个有限值(就是1上的开区间长度的2倍)。

现在我们让1上的开区间逐渐缩小趋向于一个点,那么所有区间的总长度也相应缩小,趋向于长度0。 这样我们就说有理数集的测度是0。 用上面这种方法定义的测度也叫外测度。

一个几何区域有了测度,我们就可以定义上面的函数的积分,这是推广的黎曼积分。

比如实数上的狄利克雷函数D(x)=1(如果x是有理数),0(如果x是无理数)。 如果按照通常的理解,我们发现狄利克雷函数在整个数轴上的定积分不存在;但是按照上面讲的有理数的测度,我们就可以求出它的定积分是0。

一张图看懂数学体系

数学 分类参考

◆ 数学史

* 中国数学史

* 外国数学史:巴比伦数学,埃及古代数学,希腊古代数学,印度古代数学,玛雅数学,阿拉伯数学,欧洲中世纪数学,十六、十七世纪数学,十八世纪数学,十九世纪数学。

* 中国数学家:刘徽 祖冲之 祖暅 王孝通 李冶 秦九韶 杨辉 王恂 郭守敬 朱世杰 程大位 徐光启 梅文鼎 年希尧 明安图 汪莱 李锐 项名达 戴煦 李善兰 华蘅芳 姜立夫 钱宝琮 李俨 陈建功 熊庆来 苏步青 江泽涵 许宝騄 华罗庚 陈省身 林家翘 吴文俊 陈景润 丘成桐 

* 国外数字家:泰勒斯 毕达哥拉斯 欧多克索斯 欧几里得 阿基米德 阿波罗尼奥斯 丢番图 帕普斯 许帕提娅 阿耶波多第一 博伊西斯,A.M.S. 婆罗摩笈多 花拉子米 巴塔尼 阿布·瓦法 奥马·海亚姆 婆什迦罗第二 斐波那契,L. 纳西尔丁·图西 布雷德沃丁,T. 奥尔斯姆,N. 卡西 雷格蒙塔努斯,J. 塔尔塔利亚,N. 卡尔达诺,G. 费拉里,L. 邦贝利,R. 韦达,F. 斯蒂文,S. 纳皮尔,J. 德扎格,G. 笛卡尔,R. 卡瓦列里,(F)B. 费马,P.de 沃利斯,J. 帕斯卡,B. 巴罗,I. 格雷果里,J. 関孝和 牛顿,I. 莱布尼茨,G.W. 洛必达,G.-F.-A.de 伯努利家族 棣莫弗,A. 泰勒,B. 马克劳林,C. 欧拉,L. 克莱罗,A.-C. 达朗贝尔,J.le R. 蒙蒂克拉,J.E. 朗伯,J.H. 贝祖,E. 拉格朗日,J.-L. 蒙日,G. 拉普拉斯,P.-S. 勒让德,A.-M. 傅里叶,J.-B.-J. 热尔岗,J.-D. 高斯,C.F. 泊松,S.-D. 波尔查诺,B. 贝塞尔,F.W. 彭赛列,J.-V. 柯西,A.-L. 麦比乌斯,A.F. 皮科克,G. 罗巴切夫斯基 格林,G 沙勒,M. 拉梅,G. 施泰纳,J. 施陶特,K.G.C.von  普吕克,J. 奥斯特罗格拉茨基,M.B. 阿贝尔,N.H. 波尔约,J. 斯图姆,C.-F. 雅可比,C.G.J. 狄利克雷,P.G.L. 哈密顿,W.R. 德·摩根,A. 刘维尔,J. 格拉斯曼,H.G. 库默尔,E.E. 伽罗瓦,E. 西尔维斯特,J.J. 外尔斯特拉斯,K.(T.W.) 布尔,G. 斯托克斯,G.G. 切比雪夫 凯莱,A. 埃尔米特,C. 艾森斯坦,F.G.M. 贝蒂,E. 克罗内克,L. 黎曼,(G.F.)B. 康托尔,M.B. 克里斯托费尔,E.B. 戴德金(J.W.)R. 杜布瓦-雷P.D.G. 诺伊曼,C.G.von 李普希茨,R.(O.S.). 克莱布什,R.F.A. 富克斯,I.L. 贝尔特拉米,E. 哥尔丹,P.A. 若尔当,C. 韦伯,H. 达布,(J.-)G. 李,M.S. 施瓦兹,H.A. 诺特,M. 康托尔,G.(F.P.) 克利福德,W.K. 米塔-列夫勒,(M.)G. 弗雷格,(F.L.)G. 克莱因,(C.)F. 弗罗贝尼乌斯,F.G. 柯瓦列夫斯卡娅,C.B. 亥维赛,O. 里奇,G. 庞加莱,(J.-)H. 马尔可夫,A.A. 皮卡,(C.-)E. 斯蒂尔杰斯,T.(J.) 李亚普诺夫,A.M. 皮亚诺,G. 胡尔维茨,A. 沃尔泰拉,V. 亨泽尔,K. 希尔伯特,D. 班勒卫,P. 闵科夫斯基,H. 阿达尔,J.(-S.) 弗雷德霍姆,(E.)I. 豪斯多夫,F. 嘉当,E.(-J.) 波莱尔,(F.-E.-J.-E) 策梅洛,E.F.F. 罗素,B.A.W. 列维-齐维塔,T. 卡拉西奥多里,C. 高木贞治 勒贝格,H.L. 哈代,G.H. 弗雷歇,M.-R. 富比尼,G. 里斯,F.(F.) 伯恩施坦,C.H. 布劳威尔,L.E.J. 诺特,(A.)E. 米泽斯,R.von 卢津,H.H. 伯克霍夫,G.D. 莱夫谢茨,S. 李特尔伍德,J.E. 外尔,(C.H.)H. 莱维,P. 赫克,E. 拉马努金,S.A. 费希尔,R.A. 维诺克拉多夫 莫尔斯 巴拿赫,S. 辛钦 霍普夫,H. 维纳,N. 奈望林纳,R. 西格尔,C.L. 阿廷,E. 哈塞,H. 扎里斯基,O. 博赫纳,S. 布饶尔,R.(D.) 塔尔斯基,A. 瓦尔德,A. 柯尔莫哥洛夫,A.H. 冯·诺伊曼,J. 嘉当,H. 卢伊,H. 哥德尔,K. 韦伊,A. 勒雷,.J. 惠特尼,H. 克列因 阿尔福斯,L.V. 庞特里亚金 谢瓦莱,C. 坎托罗维奇 盖尔范德 爱尔特希 施瓦尔茨 小平邦彦。

* 数字著作:《算数书》《算经十书》《周髀算经》《九章算术》《海岛算经》《孙子算经》《张丘建算经》《五曹算经》《五经算术》《缀术》《数术记遗》《夏侯阳算经》《缉古算经》《数理精蕴》《畴人传》《数书九章》《测圆海镜》《益古演段》《四元玉鉴》《算法统宗》《则古昔斋算学》《几何原本》《自然哲学的数学原理》《几何基础》

* 中国古代数学计算方法:筹算,珠算,孙子剩余定理,增乘开方法,贾宪三角,招差法,盈不足术,百鸡术。

* 其他:纵横图,记数法,黄金分割,希腊几何三大问题,计算工具,和算,费尔兹奖,沃尔夫奖,希尔伯特数学问题,国际数学教育委员会,国际数学联合会,国际数学家大会,数学刊物,中国数学教育,中国数学研究机构,中国数学会。

◆ 数学基础:逻辑主义,形式主义,直觉主义。

◆ 数理逻辑

* 逻辑演算:命题、一阶、高阶、无穷、多值-模糊、模态、构造逻辑等。

* 模型论:模态模型论,非标准模型等。

* 公理集合论:集合论公理系统,力迫方法,选择公理,连续统假设等。

* 逆归论:算法,递归函数,递归可枚举集,不可解度,广义递归论,判断问题,分层理论等。

* 证明论:数学无矛盾性,哥德尔不完备性定理,构造性数学,希尔伯计划等。

◆ 集合论:集合,映射,序数,基数,超限归纳法,悖论,数系(实数,虚数),组合数学,图论(四色问题)、算术等。

◆ 代数学

* 多项式:代数方程等。

* 线性代数:行列式,线性方程组,矩阵,自向量空间,欧几里得空间,线性变换,线性型,二次性,多重线性代数等。

* 群:有限群、多面群体、置换群、群表示论、有限单群等。

* 无限群:交换群,典型群,线性代数群,拓扑群,李群,变换群,算术群,半群等。

* 环:交换环,交换代数,结合代数,非结合代数-李代数,模,格-布尔代数等。

* 乏代数 * 范畴

* 同调代数-代数理论

* 域:代数扩张,超越扩张,伽罗瓦理论-代数基本定理,序域,赋值,代数函数域,有限域,p进数域等。

◆ 数论

* 初等数论:整除,同余,二次剩余,连分数,完全数,费马数,梅森数,伯努利数,数论函数,抽屉原理等。

* 不定方程:费马大定理等。

* 解析数论:筛法,素分布法,黎曼ζ函数,狄利克雷特征,狄利克雷L函数,堆垒数论-整数分拆,格点问题,欧拉常数等。

* 代数数论:库默尔扩张,分圆域,类域论等。

* 数的几何 * 丢番图逼近 * 一致分布 * 超越数论 * 概率数论 * 模型式论 * 二次型的算术理论 * 代数几何

◆ 几何学

* 欧几里得几何学-希尔伯特公理系统:欧里几得空间,坐标系,圆周率,多边形,多面体等。

* 解析几何学:直线,平面,二次曲线,二次曲面,二次曲线束,二次曲面束,初等几何变换,几何度量等。

* 三角学

* 综合几何学:尺规作图-希腊几何三大问题等。

* 仿射几何学:仿射变换等。

* 射影几何学:对偶原理,射影坐标,射影测度,绝对形,交比-圆点,直线几何等。

* 埃尔朗根纲领 * 百欧几里得几何学

* 微分几何学:曲线,曲面-直纹面-可展曲面-极小曲面等。

* 微分流形:张量,张量分析,外微分形式,流形上的偏微分算子,复流形,辛流形,黎曼几何学,常曲率黎曼空间-齐性空间-黎曼流形的变换群-闵科夫斯基空间,广义相对论,联络论,杨-米尔斯理论,射影微分几何学,仿射微分几何学,一般空间微分几何学,线汇论,积分几何学等。

◆ 拓扑学

* 一般拓扑学(拓扑空间,度量空间,维数,多值映射

* 代数拓扑学(同调论,同伦论-CW复形,纤维丛-复叠空间,不动点理论-闭曲面的分类-庞加莱猜想

* 微分拓扑学(流形-横截性

* 纽结理论 * 可微映射的奇点理论 * 突变理论 * 莫尔斯理论

◆ 分析学

* 微积分学

** 函数:初等函数,隐函数等。

** 极限:函数的连续性等。

** 级数

** 微分学:导数,微分,中值定理,极值等。

** 积分学:积分,原函数,积分法,广义积分,含参变量积分等。

** 多元微积分学:偏导数,全微分,方向导数,雅可比矩阵,雅可比行列式,向量,向量分析,场论等。

* 复变函数论:复变函数(解析函数,柯西积分定理,解析函数项级数,幂级数,泰勒级数,洛朗级数,留数,调和函数,最大模原理,共形映射,特殊函数,整函数,亚纯函数,解析开拓,椭圆函数,代数函数,模函数,函数值分布论,黎曼曲线,单叶函数,正规族,拟共形映射,解析函数边值问题,狄利克雷级数,解析函数边界性质,拉普拉斯变换,积分变换,泰希米勒空间,广义解析几何等)。

* 多复变函数论

* 实变函数论:勒贝格积分,有界变差函数,测度论,黎曼-斯蒂尔杰斯积分,赫尔德不等式,施瓦兹不等式,闵科夫斯基不等式,延森不等式等。

* 泛函分析:泛函数,函数空间,索伯列夫空间,拓扑线性空间,巴拿赫空间,半序线性空间,希尔伯特空间,谱论,向量值积分,线性算子,全连续算子,谱算子,线性算子扰动理论,赋范代数,广义函数,非线性算子(泛函积分,算子半群,遍历理论,不变子空间问题)等。

* 变分法:变分法,大范围变分法等。

* 函数逼近论:函数构造论,复变函数逼近(外尔斯特拉斯-斯通定理,拉格朗日插值多项式逼近,埃尔米特插值多项式逼近,三角多项式,连续模,强迫逼近,有理函数逼近,正交多项式,帕德逼近,沃外尔什逼近,联合逼近,抽象逼近,宽度,熵,线性正算子逼近,傅里叶和)等

* 傅里叶分析:三角函数,傅里叶级数,傅里叶变换-积分(傅里叶积分算子,乘子,共轭函数,卢津问题,李特尔伍德-佩利理论,正交系,极大函数,面积积分,奇异积分,算子内插,BMO空间,Hp空间,奇异积分的变换子,佩利-维纳定理,卷积,Ap权),概周期函数,群上调和分析(哈尔测度,正定函数,谱综合)等。

* 流形上的分析:霍奇理论,几何测度论,位势论等。

* 凸分析 * 非标准分析

◆ 微分方程

* 常微分方程(初等常数微分方程,线性常微分方程,常微分方程初值问题,常微分方程边值问题,常微分方程解析理论,常微分方程变换群理论,常微分方程定性理论,常微分方程运动稳定性理论,哈密顿系统,概周期微分方程,抽象空间微分方程,泛函数分方程-微分差分方程,常微分方程摄动方法,常微分方程近似解似解,动力系统-拓扑动力系统-微分动力系统

* 偏微分方程(数学物理方程,一阶偏微分方程,哈密顿-雅可比理论,偏微分方程特征理论,椭圆型偏微分方程-拉普拉斯方程,双曲型偏微分方程-波动方程,双曲守恒律的间断解,抛物型偏微分方程-热传导方程,混合型偏微分方程,孤立子,索伯列夫空间,偏微分方程的基本解,局部可解性,偏微分算子的特征值与特征函数,数学物理中的反问题,自由边界问题,分歧理论,发展方程,不适定问题

* 积分方程:弗雷德霍姆积分方程,沃尔泰拉积分方程,对称核积分方程,奇异积分方程,维纳-霍普夫方程,维纳-霍普夫方法等。

◆ 计算数学

* 数值分析:数值微分等。

* 数值逼近:插值,曲线拟合等。

* 计算几何:样条函数值积分-数论网格求积分法,有限差演算,有限差方程等。

* 常微分方程初值问题数值解法:单步法,多步法,龙格-库塔法,亚当斯法等。

* 常微分方程边值问题数值解法:打靶法等。

* 高次代数方程求根 * 超越方程数值解法

* 非线性方程组数值解法:迭代法,牛顿法等。

* 最优化

* 线性规划:单纯形方法等。

* 无约束优化方法 * 约束优化方法 * 概率统计计算

* 蒙特卡罗达:伪随机数等。

* 代数特征值问题数值解法:广义特征值问题数值解法等。

* 线性代数方程组数值解法:稀疏矩阵,广义逆矩阵,对角优势矩阵,病态矩阵,消元法-高斯消去法,松驰法,共轭梯度法等。

* 偏微分方程边值问题差分方法

* 偏微分方程初值问题差分方法:计算流体力学,特片线法,守恒格式,分步法(局部一维方法、交替方向隐式法、显式差分方法、隐式差分方法),有限差分方法,有限元方法,里茨-加廖金方法(里茨法、加廖金法),玻耳兹曼方程数值解法,算图-诺模图等。

* 数值软件:并行算法,误差,最小二乘法,外推极限法,快速傅里叶变换-快速数论变换,数值稳定性,区间分析,计算复杂性等。

◆ 概率论

* 概率分布(数学期望,方差,矩,正态分布,二项分布,泊松分布

* 随机过程(马尔可夫过程,平稳过程,鞅,独立增量过程,点过程,布朗运动,泊松过程,分支过程,随机积分,随机微分方程,随机过程的极限定理,随机过程统计,滤波,无穷粒子随机系统等。

* 概率,随机变量 * 概率论中的收敛 * 大数律 * 中心极限定理 * 条件期望

◆ 数理统计学

* 参数估计:点估计,区间估计等。

* 假设检验:列联表等。

* 线性统计模型:回归分析,方差分析等。

* 多元统计分析:相关分析等。

* 统计质量管理:控制图,抽样检验,寿命数据统计分析,概率纸等。

* 总体 * 样本 * 统计量 * 实验设计法 * 抽样调查 * 统计推断 * 大样本统计 * 统计决策理论 * 序贯分析

* 非参数统计 * 稳健统计 * 贝叶斯统计 * 时间序列分析 * 随机逼近 * 数据分析

◆ 运筹学

* 数学规则:线性规划,非线性规划,无约束优化方法,约束优化方法,几何规划,整数规划,多目标规划,动态规划-策略迭代法,不动点算法,组合最优化-网络流,投入产出分析等。

* 军事运筹学:彻斯特方程,对抗模拟,对策论,最优化等。

* 马尔可夫决策过程 * 搜索论 * 排队论 * 库存论 * 决策分析 * 可靠性数学理论 * 计算机模拟 * 统筹学 * 优选学

◆ 数学物理

◆ 控制理论

◆ 信息论

◆ 理论计算机科学

◆ 模糊性数学

测度定义的描述

20世纪初测度论的建立,使得人们对R中的子集关于n维勒贝格测度μn的行为有了很好的了解。大部分函数论由于勒贝格积分论而产生了巨大变化。但是在处理与R中低维点集有关的数学问题时遇到了困难。例如著名的普拉托问题,在二维曲面时尚可以结合共形变换和狄利克雷原理巧妙地应用勒贝格方法而解决。而在曲面的维数超出2时,这些经典的方法就失败了。几何测度论正是在这种背景下产生。它始于1914年C.卡拉西奥多里关于测度论的基础性工作,经过几十年的发展,熔合了来自分析、几何、代数拓扑中的许多技巧,产生了许多新的概念,成为数学研究的一个有力工具。

豪斯多夫测度与可求积集合在卡拉西奥多里的工作出现以后的开始20~30年内,大部分的兴趣在于了解R中的子集关于m 维豪斯多夫测度, 积分几何测度等各类测度的行为。对于A嶅R,0≤k<∞,δ>0,定义A的k维豪斯多夫测度(简称h测度)为几何测度论

式中几何测度论

。h测度是R中的一个博雷尔正则测度。又定义inf{k:h(A)=0}为A的豪斯多夫维数,简称h 维数。当k=n时,h(A)=μn(A),n=0时h(A)为A的元素个数。0和n中间每个数均可出现为R中某个子集的h 维数。例如康托尔集的h 维数为ln2/ln3。

设A的h测度有限, 在k>0时,若存在R中某个有界子集到 A的李普希茨映射(即二点距离的增长比受到某个正常数控制的映射),那就称A为k可求积集(k=0时为有限集,也称可求积集)。如果A除了一个h测度为0的子集外,为可列个k可求积集合覆盖,就称A为(h,k)可求积集。集合的可求积性质是一阶光滑流形的某种推广。事实上,A为(h,k)可求积集合的充要条件是:除了一个h测度为0的子集外,它可由R中可列个C类k维子流形所覆盖。可求积集合的这种描述使得对于它的构造的研究,特别是它的射影性质的研究成为几何测度论的重要内容。在A不含有h测度大于0的k可求积子集时,称A为纯粹(h,k)不可求积集合。

设p:R→R为正交射影,即保持内积不变的线性映射。其共轭记为p,它的全体记为几何测度论

(n,k),正交群O(n)=O(n,n)通过右乘可递地作用在几何测度论

(n, k)上。这个运算在几何测度论

(n,k)上诱导出惟一的不变测度θ,使得空间几何测度论

(n,k)关于θ的全测度等于1,那么当A为(h,k)可求积集合时,成立几何测度论

式中几何测度论

。上式右边即为A的积分几何测度I几何测度论

,它先在A与n-k维仿射子空间p(y)的交集上积分,然后让p取遍所有正交射影。因此这个式子反应了 (h,k)可求积集合的射影性质。这是求平面曲线长度的克罗夫顿方法的推广,也类似于柯西寻求凸体周界面积的方法。另一方面, 对于h测度有限的任何博雷尔集B,总存在博雷尔子集C嶅B,使得几何测度论

,几何测度论

,且(B\C为纯粹(h,k)不可求积。进一步,几何测度论

成立,当且仅当B为(h,k)可求积。以上这些结果首先为A.S.贝斯尔科里奇对平面上的h测度得到。1947年,H.费德雷尔证明了一般情形。

在几何测度论发展早期就知道,对于R中每个勒贝格可测集W以及R到R的李普希茨映射ƒ,有面积公式几何测度论

式中Jkƒ(x)为ƒ的雅可比式。在ƒ为一一时,右边的积分就等于h(ƒ(W)),因此对于n可求积集合,它的h测度就等于微分几何中的 n维体积。利用映射在一点“近似可微”这个概念, 可以将这个公式推广到R中的(h,k)可求积集合。但在ƒ(W )的h 维数小于n时,公式反映的信息很少。1957年,费德雷尔证明:对每个李普希茨映射几何测度论

,及每个μn可测集W 成立余面积公式:几何测度论

面积公式与余面积公式分别应用于目标空间的维数至少为n与至多为n的情形。因此可将它们看成是对偶的公式,余面积公式也已被推广到(h,k)可求积集合的情形。这些公式的研究使得人们了解到,关于可微映射的积分变换的本质上的假定在于对这个映射的雅可比式秩的限制。

密度密度与近似切锥是描述一个测度局部行为的两个重要概念。对于拉东测度v,以α为心,r为半径的球关于v的测度与几何测度论

的比值,在r→0时的上极限与下极限分别称为测度v在α点的k维上密度与k维下密度。二者相等时就称为k维密度几何测度论

(v,α)。利用上密度可以定义集合的近似切锥,它何时成为向量空间与该集合的可求积性质和射影性质有着深刻的联系。利用密度定义的另一个重要概念是集合在一点的外法线。当集合有光滑边界时,这个概念非常直观,在一般情形相当复杂。

给定点集Q,如下定义新的测度у墯Q:集合G关于у墯Q 的测度у墯Q(G)=у(Q∩G)。集合A在一点b的外法线是如下确定的一个单位向量u=n(A,b),当Q1为过b点且以u为法向的超平面围成的半空间(x-b)·u>0时,几何测度论

几何测度论

,Q2为另一半空间(x-b)·u<0时,几何测度论

。这个概念只含有点集A关于μn的测度论行为,而不用预先知道A的拓扑结构,甚至边界的概念也未提到。这样可塑的概念使高斯-格林公式推广到相当一般的程度:设集合A嶅R,令几何测度论

,几何测度论

。如果对每个紧集几何测度论

,那么对R上有紧集的每个李普希茨一阶向量场ξ,成立几何测度论

另一方面,若以BdryA记A的普通边界,那么在对R的每个紧集K,都有几何测度论

时,上述条件满足,从而推广的高斯-格林公式也成立。

整流长期以来,人们就寻求着n维空间中“k维积分区域”的分析与拓扑的描述。这个概念应该保留微分流形的光滑性与整系数多面体链的组合性质所带来的好处,同时为满足变分的需要,这类区域应具有某种紧致性质。“整流”正是为这样的需要而产生。

设U 为R中的开集,以几何测度论

(U)记紧支集落在U内的m 阶光滑微分形式全体。几何测度论

(U)上的线性泛函称为m维流,其全体记为几何测度论

m(U)。流S ∈几何测度论

m(U)的支集sptS理解为U内的最小相对紧子集C, 使得对一切满足 sptφCU\C的 φ∈几何测度论

(U ), 有S(φ)=0。流这个概念是由法国数学家G.-W.德·拉姆为研究霍奇理论而引入的。由于一个曲面决定于对定义在它上面的任意 m阶光滑微分形式的积分运算。因此m 维几何曲面可以分析地表示成一个流。特别地,由点α0,α1,…,αm生成的单纯形若落在U内,那么它也代表一个流。这种流的整系数线性组合,称为U中的一个整系数多面体链。如果一个流可以用整系数多面体链关于李普希茨映射的像来逼近,就称它为可求积流。利用边缘算子д可以构成新的流дS,定义为дS(φ)=S(dφ)。这里d为外微分运算,如果S与дS均为可求积流,就称S为整流。例如每个一维整流是总长度小于∞的有限多条单弧与可数条单闭弧的和。R 中的每个n维整流可表示成几何测度论

,其中e1,e2,…,en为R的切空间的标准基,A为使得推广的高斯-格林公式成立的勒贝格可测集。当1<m<n时,R中的m维整流是相当复杂的。但重要的是,由紧支集在同一有界集内且按某个范数有界的整流组成的集是紧的。正是这一点形成了变分学中新的几何方法。

如果流S可以表示成R+дT,R和T都是可求积流,就称S为整平坦链。利用边缘算子可以建立这类流的同调理论。它与局部李普希茨范畴内的、整系数的经典奇异同调论同构。但对于积分问题,相交理论等,这种链群明显地优于奇异链群。因为与奇异链不一样,一条平坦链与其分刈等同,这就简化了循环的构造,并得到较好的实系数上循环。不仅如此,还发现所谓的等周不等式不仅对经典的微分几何中某些特殊情形成立,而且对这种同调论有类似估计,这就将代数拓扑与测度论联系起来了。

可以用流的理论来研究普拉托问题,存在性定理表明极小曲面总是一个m维局部可求积流,即这样的流S∈几何测度论

m(U),对每个x∈U,总存在紧支集在U内的可求积流R,使x媂spt(S-R)。曲面的光滑性问题就是sptS的光滑性问题。若α∈sptS存在领域V嶅R,使V∩sptS为C类m维子流形,就称α为正则点,否则就称奇点。由于几何测度论的发展,使高维普拉托问题取得重大进展。当m ≤6时极小曲面是光滑的,在m≥7时奇点集的h 维数不超过m-7。

类似于局部可求积流,可以定义局部整流,局部整平坦流。后者与流形上分析中的实解析子簇与复解析子簇有十分密切的关系。

弱可微函数又称有界变差函数。R上光滑函数的可微性可以用这样的方法来刻画:对于R上有紧支集的李普希茨向量场ξ,成立

几何测度论

,但是右边的积分并不一定要求ƒ光滑,仅要求ƒ局部μn可积。因此ξ(x)的这个线性泛函可以看成 ƒ 的测度论意义下的弱微分,只要它满足里斯表示定理的有界性假定。这种ƒ 称作弱可微函数。开集几何测度论

上的弱可微函数全体记为BV(几何测度论

),则BV(几何测度论

)按范数几何测度论

形成巴拿赫空间。弱可微函数曾在各种场合下出现,首先在勒贝格面积论,而后在偏微分方程论中,特别地,它是极小曲面的理论中的有力工具。

参考书目

H. Federer,Geometric Measure Theory,Springer-Verlag, Berlin, 1969.

E.Giusti,MiniMal Surfaces and Functions of Bounded variation,Birkh user, Basel-Stuttgart, 1984.

H.Whitney,Geometric Integration Theory,PrincetonUniv. Press, Princeton, 1957.

扫描二维码推送至手机访问。

版权声明:本文由尚恩教育网发布,如需转载请注明出处。

本文链接:https://www.shane-english.com.cn/view/38838.html

标签: 数学
分享给朋友:

“几何测度论 是什么 测度定义的描述” 的相关文章

什么叫求极限 函数求极限的例题完整步骤

什么叫求极限 函数求极限的例题完整步骤

什么叫极限值,怎么求(详解)谢谢?不同类型,求极限的方法是什么?越详细越好?求极限是什么?求极限的方法有哪些,求函数极限有什么方法?求极限求导是什么原理?本文导航典型极限公式求极限的题型方法总结求极限是高中题吗求极限方法函数求极限的例题完整步骤求极限可以用求导公式吗典型极限公式极限值么,不知道你是高...

线性代数强化用什么 考研数学一的线性代数用哪本教材好?

学习线性代数用什么教辅好?学习线性代数用什么书才好?考研线性代数教材哪一本,考研数学一的线性代数用哪本教材好,如何增强线性代数的应用性(急!?线性代数到底有什么用?本文导航线性代数怎么复习得高分线性代数哪本教材通俗易懂考研线性代数用什么练习册好考研数学一的线性代数用哪本教材好?线性代数及其应用怎么自...

什么是无界函数 常见的有界函数

什么是无界函数 常见的有界函数

什么叫有界函数和无界函数?什么是无界函数?函数无界是什么意思?怎样证明函数无界?函数无界的定义是什么?无界函数的定义是什么?本文导航常见的有界函数怎么判断是否是无界函数无界函数定义函数无界的判断函数在定义域内有界存在极限吗无界函数的极限都不存在吗常见的有界函数有界函数是指有最值,无界函数则无最值。例...

什么是多因素随机区组 居民小区规划设计原则

什么是多因素随机区组 居民小区规划设计原则

随机区组试验属于多因素还是单因素试验,随机区组设计的基本介绍,什么是随机区组设计?如何确保小区布置符合要求?随机区组设计与完全随机设计有什么区别?简述随机区组设计与完全随机设计的优缺点,谁能用大妈听得懂的话解释一下随机区组,并举个例子。本文导航随机对照试验可以不设对照组吗交互作用的随机化区组设计居民...

计算数学专业是什么 计算数学和应用数学

应用数学,基础数学,还有计算数学都有什么区别?计算数学专业毕业后做什么?计算数学专业的研究生就业出路是什么?本文导航计算数学和应用数学数学与计算机专业有前途吗应用数学研究生的就业前景计算数学和应用数学应用数学是应用目的明确的数学理论和方法的总称,研究如何应用数学知识到其它范畴(尤其是科学)的数学分枝...

数学记忆的方法有哪些 怎样让自己快速记住数学公式

数学记忆的方法有哪些 怎样让自己快速记住数学公式

学习数学的记忆方法,如何快速记忆小学数学知识?如何提高记忆数学知识的能力?怎样学好初中数学,数学知识的快速记忆方法?数学公式怎么才能背熟?有快速的方法么?高中数学有哪些记忆方法。本文导航学习数学的思维方法小学数学快速复习的最佳方法如何提升数学思维能力及方法快速让初中数学学好的方法怎样让自己快速记住数...

发表评论

访客

◎欢迎参与讨论,请在这里发表您的看法和观点。