肌肉收缩用什么学说 肌肉收缩四种形式
肌肉收缩有哪几种原理啊,肌肉收缩的原理是什么,可以用非生物装置来模拟吗? 希望能在2013-08-07 15-08之前解答?肌肉收缩的主要特征是什么?肌肉的收缩原理,肌肉收缩的滑行理论实验依据。
本文导航
肌肉收缩全过程的主要环节
Huxley(1969)提倡了一套微丝滑行学说(sliding filament theory),作为肌肉收缩原理的解释。根据这套学说,肌肉收缩是由于肌动蛋白微丝(细丝)在肌球蛋白微丝(粗丝)之上滑行所致。在整个收缩的过程之中,肌球蛋白微丝和肌动蛋白微丝本身的长度则没有改变。
微丝滑行的实际情况仍需等待进一步的阐释,但相信肌球蛋白微丝的突起部分(称作横桥或交叉桥,cross bridges)与肌动蛋白微丝上的一些特殊位置形成了一种称作肌动肌球蛋白(actomyosin)的复合蛋白,在ATP的作用之下,就能促使肌肉产生收缩的现象。
当肌肉收缩时,若肌动蛋白微丝向内滑行,使到Z线被拖拉向肌节中央而导致肌肉缩短了,这便称作向心收缩(亦称作同心收缩,concentric contraction)。例如,进行引体向上(chin-up)动作时,当二头肌(biceps)产生张力(收缩)并缩短,把身体向上提升时,就是正在进行向心收缩。反过来说,在引体向上的下降阶段,肌动蛋白微丝向外滑行,使到肌节在受控制的情况下延长并回复至原来的长度时,就是正在进行离心收缩(eccentric contraction)。还有一种情况,就是肌动蛋白微丝在肌肉收缩时并未有滑动,而且仍然保留在原来位置(例如:进行引体向上时,只把身体挂在横杆上),这便称作等长收缩(isometric contraction)。
由于肌肉在放松的时候依然具有相当程度的弹性(muscle tone),所以相信此时仍有一定数量的横桥在不断进行工作。根据Yu与Brenner(1989),即使肌肉在放松的情况下,仍然可以有30%的横桥正在执行任务。
可以用非生物装置来模拟。
模拟肌肉收缩
Huxley(1969)提倡了一套微丝滑行学说(sliding filament theory),作为肌肉收缩原理的解释。根据这套学说,肌肉收缩是由于肌动蛋白微丝(细丝)在肌球蛋白微丝(粗丝)之上滑行所致。在整个收缩的过程之中,肌球蛋白微丝和肌动蛋白微丝本身的长度则没有改变。
微丝滑行的实际情况仍需等待进一步的阐释,但相信肌球蛋白微丝的突起部分(称作横桥或交叉桥,cross bridges)与肌动蛋白微丝上的一些特殊位置形成了一种称作肌动肌球蛋白(actomyosin)的复合蛋白,在ATP的作用之下,就能促使肌肉产生收缩的现象。
当肌肉收缩时,若肌动蛋白微丝向内滑行,使到Z线被拖拉向肌节中央而导致肌肉缩短了,这便称作向心收缩(亦称作同心收缩,concentric contraction)。例如,进行引体向上(chin-up)动作时,当二头肌(biceps)产生张力(收缩)并缩短,把身体向上提升时,就是正在进行向心收缩。反过来说,在引体向上的下降阶段,肌动蛋白微丝向外滑行,使到肌节在受控制的情况下延长并回复至原来的长度时,就是正在进行离心收缩(eccentric contraction)。还有一种情况,就是肌动蛋白微丝在肌肉收缩时并未有滑动,而且仍然保留在原来位置(例如:进行引体向上时,只把身体挂在横杆上),这便称作等长收缩(isometric contraction)。
由于肌肉在放松的时候依然具有相当程度的弹性(muscle tone),所以相信此时仍有一定数量的横桥在不断进行工作。根据Yu与Brenner(1989),即使肌肉在放松的情况下,仍然可以有30%的横桥正在执行任务。
可以用非生物装置来模拟。
肌肉收缩四种形式
肌肉收缩的三种形式
肌肉对单个刺激发生的机械反应称为单收缩。根据肌肉收缩时肌长度和肌张力的变化,
可将肌肉收缩分为三种形式。
1、缩短收缩(向心收缩)
特点:张力大于外加阻力,肌长度缩短。
作用:是肌肉运动的主要形式,是实现动力性运动的基础(如挥臂、高抬腿等)。
(1)等张收缩
外加阻力恒定,当张力发展到足以克服外加阻力后,张力不再发生变化。但在不同的关节角度时,肌肉收缩产生的张力则有所不同。在关节运动的整个范围内,肌肉用力最大的一点称为“顶点”。在此关节角度下,骨杠杆效率最差。
如:推举杠铃, 关节角度在120°时肱二头肌收缩张力最大,关节角度在30°时肱二头肌收缩张力最小。
最大等长收缩时,只有在“顶点”即骨杠杆效率最差的关节角度下,肌肉才有可能达到最大收缩。而在其他关节角度下,肌肉收缩均小于自身最大力量。
在整个关节活动的范围内,肌肉做等张收缩时所产生的张力往往不是肌肉的最大张力。
(2)等动收缩
在整个关节活动范围内,肌肉以恒定速度进行的最大用力收缩。但器械阻力不恒定。
等动练习器:
在离心制动器上连一条尼龙绳,由于离心制动作用,扯动绳子越快,器械产生的阻力就越大。
特点:器械产生的阻力与肌肉用力的大小相适应。
等动收缩的优点:
外加阻力能随关节活动的变化而精确地进行调整,使肌肉在整个关节活动范围内都能产生最大的肌张力。
2、拉长收缩(离心收缩)
特点:张力小于外加阻力,肌长度拉长。
作用:缓冲、制动、减速、克服重力。
如:蹲起运动、下坡跑、下楼梯、从高处跳落等动作,相关肌群做离心收缩可避免运动损伤。
3、等长收缩
特点:张力等于外加阻力,肌长度不变。
作用:支持、固定、维持某种身体姿势。其固定功能还可为其他关节的运动创造适宜条件。
如:站立、悬垂、支撑等动作。
4、三种收缩形式的比较
(1)力量:收缩速度相同情况下,离心收缩产生的张力最大。(比向心收缩大50%,比等长收缩大25%)
(2)代谢:输出功率时,离心收缩能量消耗低,耗氧量少。
(3)肌肉酸痛:离心收缩疼痛最显著,等长收缩次之,向心收缩最轻。
肌收缩
肌肉对刺激所产生的收缩反应现象。狭义来说,是指脊椎动物骨骼肌靠传播性活动电位而发生的收缩。单一的活动电位产生单收缩,反复活动电位产生强直收缩。不通过活动电位的肌肉收缩多数情况是由于非传布性的去极化而产生的,去极化如只限于局部肌肉,且为短暂性的,称为局部收缩。去极化如在肌肉全部而且是持续性的,则称为拘性收缩。在平滑肌等所见到的持续性收缩一般称为痉挛,但很多仍然是伴随着反复活动电位或是持续性去极化。可是在双壳贝的闭壳肌等所看到的持续性收缩并没有电位的变化,这种收缩是出于闸式结构。肌肉收缩的记录大致可有两种情况:一种是在重量负荷下记录肌肉缩短时的长度变化――等张收缩。另一种是记录肌肉长度保持一定时的张力变化的等长收缩。
一、骨骼肌细胞的微细结构
粗肌丝 :肌球蛋白
1.肌原纤维: 肌动蛋白
细肌丝 原肌球蛋白
肌钙蛋白
2.肌管系统 横管系统(T管)
纵管系统 (L管)
二、肌肉的特性
1、肌肉的物理特性
① 伸展性:肌肉在外力作用下可被拉长,为肌肉的伸展性。
② 弹性:当外力消失时,肌肉又恢复到原来形状,为肌肉的弹性。
③ 粘滞性:肌肉活动时由于肌肉内部各蛋白分子相互摩擦产生的内部阻力为肌肉的粘滞性。肌肉的物理特性受温度的影响。当肌肉温度升高时,肌肉的粘滞性下降,伸展性和弹性增加。
2、肌肉的生理特性
①兴奋性:肌肉具有对刺激发生反应兴奋的能力。
②收缩性
三、细胞的生物电现象
1. 细胞的兴奋性;兴奋
2. 单一细胞的跨膜静息电位和动作电位
①静息电位:(1)概念:(内负外正)
(2)极化、超极化、去极化(除极化)及复极化的概念
②动作电位:(1)概念:(跨膜出现短暂可逆的电位变化)
(2)产生时的电变化;(3)波形的特点(锋电位、负后电位、正后电位);(4)产生的意义;(5)特点
3.生物电现象的产生机制
① K+平衡电位:产生的条件和产生机制
② 锋电位和Na+平衡电位: 产生的条件和产生机制
③ Na+通道的失活和膜电位的复极
(1)绝对不应期和相对不应期
(2)Na+泵的作用
4. 动作电位的引起和它在同一细胞上的传导
(一)阈电位和锋电位的引起
1.阈电位的概念2.阈电位现象的原因
3.阈强度、阈刺激、阈下刺激
(二)局部兴奋及其特性
(三)兴奋在同一细胞上的传导机制
1.局部电流学说 2.有髓神经纤维的跳跃式传导
四、 肌细胞的收缩功能
1、 神经-骨骼肌接头处的兴奋传递
神经-骨骼肌接头结构;兴奋传递过程;终板电位的特点;兴奋传递的特点
2、 运动单位的组成
3、 运动单位的动员
(4)骨骼肌收缩的分子机制
1. 滑行学说及其主要内容
2. 收缩过程的分子机制
①粗肌丝的结构及横桥的特性
②肌丝滑行的机制
③细肌丝的结构
五、肌肉的收缩形式与力学特征
1.缩短收缩、拉长收缩和等长收缩
缩短收缩:缩短收缩是指肌肉收缩所产生的张力大于外加的阻力时,肌肉缩短,并牵引骨杠杆做相向运动的一种收缩形式。依据整个关节运动范围肌肉张力与负荷的关系,缩短收缩又可分非等动收缩和等动收缩两种。
拉长收缩:当肌肉收缩所产生的张力小于外力时,肌肉积极收缩但被拉长,这种收缩形式称拉长收缩,又称离心收缩。
等长收缩:当肌肉收缩产生的张力等于外力时,肌肉积极收缩但长度不变,这种收缩形式称等长收缩。
2.肌肉收缩的力学特征
(一)后负荷对肌肉收缩的影响——张力与速度关系
后负荷:后负荷是肌肉收缩开始之后所遇到的负荷。
力-速度曲线:固定前负荷不变,让肌肉在不同的后负荷条件下进行等张收缩。把肌肉所产生的张力和缩短初速度绘成坐标曲线。
(二)前负荷对肌肉收缩的影响—张力与长度关系:见课本图2-15
前负荷:是肌肉收缩开始前加上的负荷。
六、肌纤维类型与运动能力
1.人类肌纤维类型的类型
依据收缩机能将骨骼肌纤维分为“慢肌”和“快肌”两种类型的观点。这一分类方法通常只适用于区别动物骨骼肌纤维类型,而不完全适合于区别人类的骨骼肌纤维类型。
(1)根据组织化学染色法
依据具有不同酶活性的肌原纤维ATP酶在各种不同pH环境中预孵育时染色程度的差异,可将骨骼肌纤维划分为Ⅰ型Ⅱ型,以及Ⅰc、 Ⅱa、Ⅱb、Ⅱc、Ⅱac和Ⅱab六种亚型。其中,Ⅱc型纤维被认为是一种未分化的较原始的肌纤维。
(2)根据肌纤维代谢特征
把骨骼肌纤维分为慢缩强氧化型、快缩强氧化酵解型和快缩强酵解型三种类型
2.两类肌纤维的形态、代谢和生理特征
形态特征
形态特征包括以下三个方面: ①结构特征; ②神经支配;③肌纤维面积。
代谢特征:① 代谢底物;② 代谢酶活性
3、生理特征
①收缩速度:肌肉中快肌纤维百分比较高者,其收缩速度也较快。
②收缩力量:肌肉收缩力大小取决于肌肉的横断面积并受肌纤维类型等因素影响,多数研究认为动物快肌收缩力量明显大于慢肌。
③ 抗疲劳性:动物和人体实验均证明,慢肌纤维的抗疲劳能力较快肌强,故快肌纤维较慢肌纤维更易疲劳。
3.不同类型肌纤维的分布
(1)肌纤维类型的百分组成。
(2)骨骼肌纤维功能上的分布现象
(3)骨骼肌纤维类型的性别差异。
(4)骨骼肌纤维类型组成的年龄变化。
(5)遗传因素对骨骼肌纤维类型分布的影响。
4.肌肉中感受器的结构和功能
(1)肌梭的结构与功能;脊髓前角的描述;感受装置结构和功能的描述;γ运动纤维的作用;反馈信息的传递
(2)腱梭的结构与功能;感受装置结构;反馈信息的传递
七、肌肉的结缔组织
1、肌肉结缔组织的组成:胶原是结缔组织最主要成分,以胶原纤维形式存在。
2.运动对肌肉结缔组织的影响
3.解释:快速下蹲比缓慢下蹲起跳和“挺胸带臂”比“停胸带臂”用力效果好的原因。
4. 运动对肌肉结缔组织的影响
①长期运动可提高肌腱的抗张力量和抗断裂力量。
②长期运动可使肌中结缔组织肥大。
八、肌电图的应用
1、肌电的引导
表面电极所引导的是整块肌肉的综合电活动,它具有操作简便,无损伤和无痛苦等优点,被广泛应用于体育科学研究,缺点是不能记录深层肌肉电活动。
2、正常肌电图
正常肌肉在完全松弛情况下不出现电活动,引导电极插入肌肉后,在记录仪上仅描记出一条平稳的基线。运动单位电位的波幅代表放电的强度,其大小取决于兴奋的运动单位大小或活动肌纤维数目。
3、肌电图的应用
①利用肌电图分析技术动作,了解完成该项动作的主要肌群,及其用力程度和顺序,为体育教学与训练提供依据。
②利用肌电图解决体育基础学科(如运动生理学、运动解剖学、运动生物力学和运动医学)中某些理论与实践问题。
③利用肌电图了解训练对神经肌肉的影响,为评定运动员训练水平提供依据
肌肉收缩的最大张力
肌肉收缩原理:
当肌肉处于静止(舒张)状态时,胞液Ca浓度较低(<10moL/L),钙离子结合亚单位(TnC)不与Ca结合,则TnC与TnI、TnT的结合较松散。
此时,TnT与原肌球蛋白紧密结合,使原肌球蛋白遮盖了肌动蛋白与肌球蛋白结合部位,阻止了肌动蛋白与肌球蛋白的结合。
同时,TnI与肌动蛋白紧密结合,也阻止了肌动蛋白与肌球蛋白的相互作用,并抑制肌球蛋白的ATP酶活性,故肌肉处于舒张状态。
当胞液内Ca浓度增加到10moL/L -10 moL/L时,Ca便与TnC结合,之后,TnC构象变化,从而增强了TnC与TnI、TnT之间的结合力。
使三者紧密结合,削弱了TnI与肌动蛋白的结合力,使肌动蛋白与TnI脱离,变成启动状态。
同时,TnT使原肌球蛋白移动到肌动蛋白螺旋沟的深处,而排除了肌动蛋白与肌球蛋白相结合的障碍。
于是,肌动蛋白便与肌球蛋白的头部相结合,产生有横桥的肌动球蛋白。
在此蛋白中,肌动蛋白使肌球蛋白的ATP酶活性大大提高,故肌球蛋白催化ATP水解反应。
产生的能量使横桥改变角度,而水解产物的释放又使横桥的位置恢复,再与另一个ATP结合,如此循环,细丝便沿粗丝滑行,肌肉发生收缩。
当胞液Ca浓度下降(<10moL/L)时,Ca与TnC分离,TnI又与肌动蛋白结合,从而使肌动蛋白恢复静状态。
同时原肌球蛋白也恢复原位,从而使肌动蛋白与肌球蛋白不能结合,肌肉不能转为舒张状态。
扩展资料
肌肉收缩机制:
电镜下观察肌肉收缩时肌原纤维的变化,发现A带长度不变,只是Ⅰ带随收缩程度不同而有变化,由此推论粗肌丝的长度是不变的。
从一个肌节的H带未端到下一个肌节的H带起端,这一距离等于细肌丝总长度,当肌肉作最大收缩时,H带消失。
而这一距离总长度未变,故认为细肌丝的长度也未发生变化。
据上述现象,1959年,赫胥黎和汉森提出了肌肉收缩的滑动学说——“滑动丝模型”。
认为在肌肉收缩时肌纤维长度的改变是由于两类肌丝相互滑动之结果。
参考资料来源:百度百科-肌肉收缩
人体骨骼肌收缩实验结果记录表
肌肉收缩的滑行学说认为,肌肉收缩时出现的肌肉或肌纤维缩短是由于肌小节中细肌丝向暗带的中央滑动,使粗、细肌丝的重叠度增加所致。;
滑行理论的主要依据是:肌肉收缩时并无暗带长度的缩短;并且与此同时也看到暗带中央H带相应地变窄,表明细肌丝在肌肉收缩时也没有缩短,只是它们更向暗带中央移动,和粗肌丝发生了更大程度地重叠。
含义
当一次神经冲动传递到运动终板,引起去极化使得Ca2+进入终板膜,使突触小泡向前移动并释放出乙酰胆碱(ACH),乙酰胆碱(ACH)与后膜上的受体结合,引起终板电位并向两侧扩布到两侧的肌细胞膜形成动作电位,并沿细胞膜传递到肌细胞的横管系统使两侧终池释放出Ca2+,Ca2+与肌钙蛋白结合使原肌球蛋白发生变化,暴露出肌动蛋白与横桥的结合位点。