工程热物理是研究什么 低温制冷和热能工程哪个好
工程热物理和热能工程有什么区别?中山大学的工程热物理考什么呢?工程热物理的学科方向,跨专业考研,动力工程及工程热物理这个专业是做什么的?热能与动力工程和动力工程及工程热物理有啥区别,工程热物理基础是指传热学和工程热力学吗?
本文导航
低温制冷和热能工程哪个好
工程热物理学
是一门研究能量以热的形式转化的规律及其应用的技术科学。它研究各类热现象、热过程的内在规律,并用以指导工程实践。工程热物理学有着自己的基本定律:热力学的第一定律和第二定律、Newton力学的定律、传热传质学的定律和化学动力学的定律。作为一门技术科学学科,工程热物理学的研究既包含知识创新的内容,也有许多技术创新的内容,是一个完整的学科体系。着重其他能量转换为热能的研究。
热能与动力工程
培养具备热能工程、传热学、流体力学、动力机械、动力工程等方面基础知识,能在国民经济和部门,从事动力机械(如热力发动机、流体机械、水力机械)的动力工程(如热电厂工程、水电动力工程、制冷及低温工程、空调工程)的设计、制造、运行、管理、实验研究和安装、开发、营销等方面的高级工程技术人才。着重热能转换为其他形式的能量或用热能来处理。
我个人观点前者比较有前途,我学的就是后者,整天在工厂里,辛苦。。。
中山大学物理学考研专业
中山大学的工程热物理,考研科目如下:
(1)101 思想政治理论
(2)201 英语一
(3)301 数学一
(4)892 工程热力学
参考书目参考博学中大考研:
中山大学工程热力学2006-2014考研真题试卷(电子版)。
《工程热力学》 沈维道 高等教育出版社。
工程热物理学是一门研究能量以热的形式转化的规律及其应用的技术科学。它研究各类热现象、热过程的内在规律,并用以指导工程实践。工程热物理学有着自己的基本定律:热力学的第一定律和第二定律、Newton力学的定律、传热传质学的定律和化学动力学的定律。作为一门技术科学学科,工程热物理学的研究既包含知识创新的内容,也有许多技术创新的内容,是一个完整的学科体系。
工程热物理专业去什么企业
工程热物理是一个体系完整的应用基础学科,就其主要研究领域应属技术学科,每一个分支学科都有坚实的理论基础和应用背景。工程热力学与能源利用分学科的基石是热力学第一、第二定律,目的是为从基本原理上考虑能源利用和环境问题提供理论与方法,其它分支学科在热力学定律基础上,拥有各具特色的理论和应用基础。热机气动热力学与流体机械分学科的理论基础是牛顿力学定律,传热传质分学科的理论基础是传热、传质定律,燃烧学分学科的理论基础是化学反应动力学理论等等。 热力学基础研究方面,在统计热力学及分子模拟领域有两方面进展,一是分形理论等新的分析手段的引进,取得了好的效果;另一方面,统计热力学及分子模拟研究开始向实用化迈进。为满足国家节能减排的重大需求,各种余热驱动、低温余热利用以及大温差的制冷循环研究不断深入,吸收、吸附式制冷循环,复叠式制冷循环以及水基有机混合物相变蓄冷等新型蓄能技术被广泛研究。热声理论得到快速发展的同时,热声制冷和热声发电技术在实验、应用方面的研究进展很快。能的综合梯级利用理论不断完善和发展。分布式能源系统作为能的梯级利用技术的典型代表,在基本原理、关键技术和系统集成等全方位开展研究,为该技术产业化示范奠定了基础。化学能与物理能综合梯级利用原理的提出拓展了能的梯级利用原理,提出了化石燃料与太阳能互补的间接燃烧能量释放新机理,拓展了一系列化学能与物理能综合梯级利用系统集成的创新。可再生能源与温室气体控制是能源与环境领域研究的重要主题。我国近年来经历了对各种太阳能热发电形式的关键技术研究,并启动了国家太阳能热发电技术专项研究。太阳能光催化分解水制氢研究在催化剂、制氢设备和制氢系统等方面取得实验室进展。太阳能燃料转换技术的研究有望实现实用化的太阳能燃料开发。在生物质发电、生物质制氢和液体燃料等方面也取得一定进展。我国学者首次提出了能源转换利用与CO2分离一体化原理,实现低能耗甚至无能耗分离CO2,研究制定了适合我国国情的温室气体控制技术路线。 国际上现已采用三维粘性计算流体动力学设计航空发动机诸部件,尤其是叶轮机械设计。叶轮机械设计系统由二维、准三维、定常设计到全三维、粘性、非定常设计的过渡是学科发展的趋势。在航空发动机设计方面,上述趋势也充分体现在对风扇/压气机、对转涡沦技术和旋转冲压发动机技术的研究中。从热机气动热力学角度看,未来燃气轮机的科学技术发展需要进一步研究高性能叶轮机械内部非定常复杂流场结构和机理、与气动热力学紧密相关的燃气透平叶片冷却技术及其流热固耦合机理与优化设计方法。相关工作围绕着压气机内部非定常流动及其控制结构的耦合问题、透平提高级负荷与非定常气动性能问题、透平叶片冷却及其流热固耦合基础问题,以及叶轮机械全三维设计理论及设计体系基本构架研究等科学问题展开。流体机械方面的研究在透平压缩机、水轮机、泵类流体机械、风力机等方向取得较大进展,上述工作为西气东输、三峡工程、南水北调以及风力发电等国家重大工程和紧迫需要提供了技术支持。 在导热研究方面,随着超快速激光加热技术以及MEMS/NEMS等微纳科技的发展,导热过程在时间尺度、空间尺度、环境温度以及热流密度等都在向极端状况扩展。微纳尺度下的导热规律的研究是传热学发展的新的重要研究方向,它对微纳热电转换装置等高科技产品的研发具有重要的意义。对流传热的研究在保留了经典方向的深化和再认识拓展等内容之外,多趋向复杂和交叉领域。非线性问题,湍流直接模拟,微尺度、跨尺度问题是自然对流研究的主要方向。对流换热过程强化和优化的研究热点是换热器和换热网络中的场协同理论、节能型强化技术的开发,以及污垢形成机理以及新型抗垢技术。辐射传热目前的发展趋势是研究内容的深化,以及趋向复杂和交叉领域,以符合航空航天、红外探测、目标与环境的红外特性、强激光及应用、功能材料制造以及生物医学等现代高新技术发展对辐射传热的需求。 多相流数理模型及数值模拟方法当前的研究重点仍在两相流,三相流已在起步阶段,将逐渐成为重点。近年来单相湍流流动中兴起的细观模拟方法, 主要是直接模拟和大涡模拟,也逐渐引入到两相湍流研究。数值模拟方法在气(汽)液/液液界面、气固/液固多相流、气液固三相离散流动、双流体/多流体等方面的研究展现出新的思路和前景。此外在颗粒动力学,多相流中波的产生、传播及其不稳定性理论、多相流与传递参数测试方法等方面也开展了广泛研究,形成了有特色的研究成果。从总体上看,我国工程热物理学科在热力循环开拓、叶轮机械流动理论、热声理论、太阳能和风能开发利用等研究领域已经形成了较强的国际竞争力,而整体研究水平与世界先进水平还有较大差距,主要体现在技术开发落后于理论研究,实验设备、测试手段落后,温室气体控制等能源、环境交叉领域基础理论和关键技术研究薄弱。
热能与动力工程考研有前途吗
动力工程专业主要是研究动力设备原理、特性、应用的;
工程热物理则主要是研究热量传递机理、特性、算法、应用的;
前者比后者的应用范围要宽很多。
热能与动力工程的主要学什么
1、培养要求不一样:
动力工程及工程热物理专业:本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练;具有进行动力机械与热工设备设计、运行、实验研究的基本能力。
热能与动力工程专业:本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练,具有进行动力机械与热工设备设计、运行、实验研究的基本能力。
2、就业方向不一样:
动力工程及工程热物理专业:毕业生可在大型企业、相关公司以及相关的研究所、设计院、高等院校和管理部门从事热能工程方面的研究与设计、产品开发、制造、试验、管理、教学等工作。主要就业方向为发电厂、内燃机厂、汽车制造厂、物流调控、锅炉厂、大型机械厂、造船厂等等
热能与动力工程专业:热力发电厂及电力公司、电力设计研究院、大中型用能企业、政府规划和环保部门、制冷和空调设备企业、高等院校等领域,从事设计、运行、自动控制、信息处理、环境保护、清洁能源利用和新能源开发等类型工作。
3、主要课程不一样:
动力工程及工程热物理专业:工程力学、机械设计基础、机械制图、电工与电子技术、工程热力学、流体力学、传热学、控制理论、测试技术等
热能与动力工程专业:工程热力学、流体力学、传热学、传热与传质原理、低温技术原理与装置、现代电站锅炉、现代电站汽轮机、发电厂自动化及计算机利用、动力设备与系统、计算机技术(硬件、软件、网络、应用)、计算机控制系统、能源与环境保护、制冷与空调等。
参考资料来源:
动力工程及工程热物理是干嘛的
工程热物理主要研究传热传质过程中的物理现象、物理机制以及传热传质的应用。基础课除了传热学,热力学,还有流体力学,以及燃烧学。不同学校开设的工程热物理学科研究重点不一样,有的学校研究燃烧,有的研究对流传热,有的研究热辐射等