怎么求对角矩阵 如何求对角矩阵
正交矩阵求出后怎么计算对角矩阵?线性代数求对角矩阵,如何求对角矩阵?请问这道求对角矩阵的题怎么做?
本文导航
正交矩阵求出后怎么计算对角矩阵
直接得到,你得到的正交矩阵时P=(a1,a2,..,an)的话
对应的对角矩阵为diag(λ1,λ2,...,λn)
其中λi 为ai对应的特征值.
线性代数求对角矩阵
|λE-A| =
|λ-4 -2 -2|
|-2 λ-4 2|
|-2 2 λ-4|
第 3 行 加到第 1 行,|λE-A| =
|λ-6 0 λ-6|
|-2 λ-4 2|
|-2 2 λ-4|
第 1 列 -1 倍 加到第 3 列,|λE-A| =
|λ-6 0 0|
|-2 λ-4 4|
|-2 2 λ-2|
|λE-A| = (λ-6)*
|λ-4 4|
| 2 λ-2|
|λE-A| = (λ-6)(λ^2-6λ) = λ(λ-6)^2,
A 的特征值是 6, 6,0. 记为 ∧ = diag(6, 6, 0)。
对于重特征值 λ = 6, λE-A =
[ 2 -2 -2]
[-2 2 2]
[-2 2 2]
初等变换为
[ 1 -1 -1]
[ 0 0 0]
[ 0 0 0]
得特征向量 (1, 1, 0)^T, (1, 0, 1)^T ;
对于重特征值 λ = 0, λE-A =
[-4 -2 -2]
[-2 -4 2]
[-2 2 -4]
初等变换为
[ 1 -1 2]
[ 0 -6 6]
[ 0 -6 6]
初等变换为
[ 1 0 1]
[ 0 1 -1]
[ 0 0 0]
得特征向量 (1, 1, 1)^T,
取变换矩阵 P =
[1 1 1]
[1 0 1]
[0 1 1]
则 P^(-1)AP = ∧ = diag(6, 6, 0)
如何求对角矩阵
对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。对角矩阵可以认为是矩阵中最简单的一种,值得一提的是:对角线上的元素可以为 0 或其他值,对角线上元素相等的对角矩阵称为数量矩阵;对角线上元素全为1的对角矩阵称为单位矩阵。对角矩阵的运算包括和、差运算、数乘运算、同阶对角阵的乘积运算,且结果仍为对角阵。
1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。
2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
基本性质
乘法结合律: (AB)C=A(BC)
乘法左分配律:(A+B)C=AC+BC
乘法右分配律:C(A+B)=CA+CB
对数乘的结合性k(AB)=(kA)B=A(kB)
转置 (AB)T=BTAT.
矩阵乘法一般不满足交换律。
请问这道求对角矩阵的题怎么做
^a,b如果互为逆方阵,即:a^-1=b
,这显然可推出:ab=ba=e。不过,这仅仅是充分条件,并非充分必要条件。
ab=ba充要条件:方阵a
行(列)向量与方阵b的行(列)向量正交。
也即,把组成a的行(或列)向量的正交向量找出。用正交向量对应构造方阵b。(这个问题讨论的前提是a,b为方阵)
扩展资料:
对角矩阵是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。对角矩阵可以认为是矩阵中最简单的一种,值得一提的是:
对角线上的元素可以为 0 或其他值,对角线上元素相等的对角矩阵称为数量矩阵;对角线上元素全为1的对角矩阵称为单位矩阵。对角矩阵的运算包括和、差运算、数乘运算、同阶对角阵的乘积运算,且结果仍为对角阵。
参考资料来源:百度百科-对角矩阵