什么叫等价无穷小 等价无穷小几何意义
等价无穷小 是什么?什么叫等价无穷小?什么是等价无穷小?等价无穷小的性质是什么?等价无穷小是什么意思?什么是等价无穷小?
本文导航
等价无穷小适用条件
设当x趋近于a,f(x)的极限为0,则称f(x)为x趋近于a时的无穷小。
若当x趋近于a,g(x)的极限也为0,且x趋近于a时,f(x)/g(x)的极限为1,则称f(x)与g(x)为x趋近于a时的等价无穷小。
等价无穷小在什么条件下可以用
推荐答案是什么玩意。那里复制的==。。。。等价无穷小,感性的理解是,趋向于无穷小的速度一样快,严格来说就是两者的商的极限为1
等价无穷小定义及公式
等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。
等价无穷小的公式证明
有限个无穷小相加、相减、相乘还是无穷小无穷小与有界函数的乘积还是无穷小无穷小除以一个极限非零的函数还是无穷小乘积的某个因子可以换成等价无穷小,和式中的某一部分不能替换。
等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。
简介
等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。
求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
等价无穷小是什么时候学的
指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。
等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。
求极限时使用等价无穷小的条件:
1、被代换的量,在去极限的时候极限值为0。
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别的什么数)时,函数值f(x)与零无限接近,即f(x)=0,则称f(x)为当x→x0时的无穷小量。
等价无穷小是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。等价无穷小也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。
等价无穷小几何意义
等价无穷小就是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。
等价无穷小是无穷小之间的一种关系,无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。
求极限时,使用等价无穷小的条件:
1、被代换的量,在取极限的时候极限值为0。
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
等价无穷小代换:
等价无穷小代换,是求极限过程中经常用到的一种方法,它实际上就是泰勒公式展开的前一项或前两项。其原理,是基于“等价无穷小”的定义以及“极限的乘法、除法运算法则”。
用等价无穷小代换求极限时,乘积项可以直接代换,而和差项不能直接代换,但可以作为整体代换。和差项不能直接代换,因为和差项直接代换,可能会忽略掉不能忽略的高阶项。
等价无穷小的本质是约分,为了这个约分,要用极限的四则运算法则,把被约分的式子和用来约分的式子乘在一起。所以等价无穷小的唯一正确用法是把整个式子乘上一个极限为1的式子,然后利用极限的乘法等于乘法的极限。