考研 考数学专业有哪些 考研哪个专业不需要考数学
哪些专业考研考数学一,数学专业考研考哪些,数学专业考研科目有哪些,数学与应用数学考研可以考哪些专业,考数二的考研专业有哪些。
本文导航
考研哪个专业不需要考数学
一、须使用数学一的招生专业
1、工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、
测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。
2、授工学学位的管理科学与工程一级学科。
二、须选用数学一或数学二的招生专业(由招生单位自定)
工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。
扩展资料:
硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三(2009年之前管理类为数学三,经济类为数学四,2009年之后大纲将数学三数学四合并)。具体不同专业所使用的试卷种类有具体规定。
须使用数学二的招生专业:
工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。
须使用数学三的招生专业:
经济学门类的各一级学科;管理学门类中的工商管理、农林经济管理一级学科;授管理学学位的管理科学与工程一级学科。
参考资料:
数学专业的考研哪个科目好考
数学考研历年题目
链接:https://pan.baidu.com/s/1abNj3eqkESzbgjpvpthTYw
提取码:9c0p
若资源有问题欢迎追问
考研数学系需要考哪些科目
数学专业一般有几个方向:(01)基础数学;(02)计算数学;(03)应用数学;(04)运筹学与控制论。具体的考试科目看你考哪个学校。初试一般英语政治统考,然后是专业课。
数学分析和高等代数是一定会考的,有的学校还有考其他科目。常微分,复变,实变什么的。好象大多数学校这些科目(常微分,复变,实变什么的)是在复试考的。
复习方法
基础知识在考试中所占的比列,这个我们上课的时候已经反复强调过了,但是还是有很多同学一味的追求解题技巧而不注重理论基础,这就会导致我们很多同学在做选择填空的时候很迷茫、做大题的时候不会把文字“翻译”成数学语言,自然也就没有解题思路。
应用数学专业考研考哪个学校
数学与应用数学考研可以考的专业:
1、基础数学
基础数学是数学下设的二级学科之一。基础数学又称为纯粹数学,是数学科学的核心与基础部分。基础数学包括数理逻辑、数论、代数、几何、拓扑、函数论、泛函分析和微分方程等分支学科。当代数学的迅速发展使得这些分支学科间交叉与渗透的趋势日益明显,出现了许多新的研究领域和生长点。
2、应用数学
应用数学是数学下设的二级学科之一。应用数学是应用目的明确的数学理论和方法的总称,研究如何应用数学知识到其它范畴的数学分枝,可以说是纯数学的相反。包括微分方程、向量分析、矩阵、傅里叶变换、复变分析、数值方法、概率论、数理统计、运筹学、控制理论、组合数学、信息论等许多数学分支,也包括从各种应用领域中提出的数学问题的研究。
3、学科教学
专业为专业硕士。专业硕士和学术学位处于同一层次,培养方向各有侧重。专业硕士主要面向经济社会产业部门专业需求,培养各行各业特定职业的专业人才,其目的重在知识、技术的应用能力。
本专业学生主要学习教育学、心理学、数学教学设计、数学课程教材分析、数学学习评价、现代数学概论等其他课程。
4、计算数学
计算数学是数学下设的一个二级学科。它主要研究有关的数学和逻辑问题怎样由计算机加以有效解决。计算数学的内容计算数学也叫做数值计算方法或数值分析。
数学与应用数学专业研究生的就业前景
应用数学专业属于基础专业,是其他相关专业的“母专业”。无论是进行科研数据分析、软件开发、三维动画制作还是从事金融保险,国际经济与贸易、工商管理、化工制药、通讯工程、建筑设计等,都离不开相关的数学专业知识,数学专业与其他相关专业的联系将会更加紧密,数学专业知识将会得到更广泛的应用。
研究生考数二的专业
数学轻工、纺织、食品、农林考数学二;化学工程、材料工程、环境工程、石油天然气工程、地质矿业工程可根据本专业对数学的要求选择选择数学一或二;其他各类专业(包括授工学学位的管理科学与工程一级学科)必须考数学一。
数学二考试科目:高等数学、线性代数
高等数学:同济六版高等数学中除了第七章微分方程考带*的伯努力方程外,其余带*号的都不考;所有”近似“的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形。
考试要求介绍:
1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2、了解函数的有界性、单调性、周期性和奇偶性。
3、理解复合函数及分段函数的概念了解反函数及隐函数的概念。