考研拐点怎么判定 极值点 和 拐点 怎么区分
如何判断一个函数在某点是否有拐点?考研数学关于拐点,考研数学,拐点,极值点 和 拐点 怎么区分?拐点的定义是什么?
本文导航
如何判断一个函数在某点是否有拐点
方法:(1)求这个函数的二阶导数;
(2)若二阶导数在这个点的左边和右边的正负性不同,则这个点就是拐点;
若在这个点的左边和右边的正负性相同,则这个点就不是拐点。
补充:关于这个点怎么求的问题:这个点一般是二阶导数等于零的点或这个点处函数无意义。
考研数学关于拐点
不是拐点,只是极值点。这个函数在x=0点处,凹凸情况没有改变,所以不是拐点。
考研数学,拐点
C正确
极值点 和 拐点 怎么区分
1、拐点和极值点通常是不一样的,两者的定义是不同的。
极值点处一阶导数为0,一阶导数描述的是原函数的增减性。
拐点处二阶导数为0,二阶导数描述的是原函数的凹凸性。
2、判读方法不同。
如果该函数在该点及其领域有一阶二阶三阶导数存在,那么函数的一阶导数为0,且二阶导数不为0的点为极值点;函数的二阶导数为0,且三阶导数不为0的点为拐点。如,y=x^4,
x=0是极值点但不是拐点。如果该点不存在导数,需要实际判断,如y=|x|,
x=0时导数不存在,但x=0是该函数的极小值点。
扩展资料:
若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。
极值点与稳定点
方程
的解
,即
称为函数
的稳定点。
注:定义不要求函数
可导,所以可导函数
的极值点必须是稳定点,但稳定点不一定是极值点。
在数学分析中,函数的最大值和最小值(最大值和最小值)被统称为极值(极数),是给定范围内的函数的最大值和最小值(本地
或相对极值)或函数的整个定义域(全局或绝对极值)。皮埃尔·费马特(Pierre
de
Fermat)是第一位发现函数的最大值和最小值数学家之一。
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
设函数y=f(x)在点
的某邻域内连续,若(
,f(
))是曲线y=f(x)凹与凸的分界点,则称(
,f(
))为曲线y=f(x)的拐点。
注:拐点(
,f(
))是曲线上的一点,它有横坐标和纵坐标,不要只把横坐标当成拐点。
参考资料:搜狗百科-极值点、搜狗百科-拐点
拐点的定义是什么?
拐点的定义:拐点又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
相关介绍:
必要条件:设函数f(x)在点X的某邻域内具有二阶连续导数,则该点的二阶导数为0,反之则不成立。
充分条件第一充分条件:函数在某点处二阶导数为0,在该点处左右两次二阶导数异号,则可以判定为拐点。两侧同号则不为拐点。
第二充分条件:函数在某点处二阶导数为0,三阶导数不为0,则可以判定为拐点。