高考选修曲线 高考极坐标与参数方程解题方法
关于广东高考理数的曲线与方程的问题,高中什么时候学圆锥曲线啊 哪本书的内容?辽宁数学文科选修中圆锥曲线和导数在高考中占多大重要程度?相比必修需要付出多大精力,高考理科数学想上130那导数与圆锥曲线选哪个啊?都挺难的,没时间了,只能专攻一个了,请问哪个容易得,高考选修极坐标与参数方程中,会考双曲线和抛物线的参数方程吗?高考必考,出现渐近线的双曲线,公式通解。
本文导航
高考极坐标与参数方程解题方法
1.本单元内容在课本及高考中的地位
求圆锥曲线的方程(含求轨迹),既是解析几何的重要基本知识,同时又是高考每年必考的重点内容。其主要内容是椭圆、双曲线、抛物线方程的求法,这一类问题的解决往往要涉及到函数、不等式、方程、三角、直线等有关知识和数形结合思想、函数与方程思想、转换思想的综合应用,因此在高考中常常以圆锥曲线为载体来全面考查学生的综合能力。
2.求圆锥曲线方程的常用方法
定义法、待定系数法、直接法、代入法、参数法、几何法等。关键是形数结合,建立等量关系。
3.对本单元的学习和考试要求
能根据所给条件,选择适当坐标系求出曲线方程,并画出方程所表示的曲线。
4.求曲线方程的一般步骤及要点是
建系、列式、化简、证明。
第一步骤“建系(建立坐标系)”在实际问题中有两种情况:(1)所研究的问题中已经有坐标系,此时在给定的坐标系中求出方程即可;(2)条件中无坐标系,这时必须首先选取适当坐标系,通常总是选取特殊位置的点为原点,相互垂直的直线为坐标轴等。
第二步是最重要的一环,须仔细分析曲线的特征,注意揭示隐含条件,抓住曲线上任意点有关的等量关系、所满足的几何条件,列出方程。在将几何条件转化为代数方程的过程中,要注意圆锥曲线定义和初中平面几何知识的应用,还会常用到一些基本公式,如两点间的距离公式、点到直线的距离公式、直线斜率公式等。
第三步,在化简过程中,要注意运算和变形的合理性与准确性,避免“失解”和“增解”。
对于第四步,中学阶段不作要求(从理论上讲则是必要的),多数情况下不会有什么问题,但若遇特殊情况则应该适当予以说明。例如,根据题意,某些点虽然其坐标满足方程,但却不在所求曲线上,那么可通过限制x、y的取值范围把它删除掉。
5.例题解析
例1 求经过定点A(2,0),且与定直线x=-2相切的动圆圆心P的轨迹方程。
解如图易知,动点到定点的距离与到定直线的距离相等,根据圆锥曲线的定义可知,动点轨迹是抛物线y2=2px,其中,p=4,所以,所求P点轨迹方程是y2=8x。
例2 (1992年全国高考题)焦点为F1(-2,0)和F2(6,0),离心率为2的双曲线的方程是______________
解 由两焦点知双曲线的中心为(2,0),c=4,c/a=2,a=2,b2=12,
∴所求曲线方程是。
例3 (1993年全国理科题)动圆与定圆x2+y2=1和x2+y2-8x+12=0都相外切,则动圆圆心的轨迹方程是( )
A.抛物线 B.圆 C.双曲线的一支 D.椭圆
解 由条件设O:x2+y2=1,r1=1;M:(x-2)2+y2=4,r2=2,M(2,0),设动圆圆心为P(x,y),半径为r,则有, ,
∴,
根据双曲线的定义,动圆圆心轨迹是双曲线的一支。故选C。
例4 在双曲线的上支有不同三点A(x1,y1),C(x2,y2),B(,6)到焦点F(0,5)的距离成等差数列,求y1+y2的值。
解 ∵,∴双曲线的准线为m:y=5/12,
作AA1⊥m于A1则, ∴,
同理:,
∵,
∴ 2,
∴y1+y2=12。
说明 1〕以上四例都是根据圆锥曲线的定义求解,这是求圆锥曲线方程最重要的解法之一,其中例3和例4分别使用了第一和第二定义,实际上,凡题目中出现“焦半径(焦点与曲线上点的连线)”,就应考虑使用圆锥曲线的定义,若还有“准线”出现,则就一定会用到第二定义。
2〕动圆与定圆相切的问题,要连接两圆心(平面几何常用辅助线),寻找圆心距间的关系,其轨迹往往是抛物线、椭圆或双曲线中的一种,在这一点上例3比较有代表性。
例5 与双曲线有相同渐近线,且经过点A(2,-3)的双曲线的方程是______________.
解 设所求双曲线方程是,
∵点A在双曲线上,∴
∴双曲线方程是:
说明 本题考查待定系数法、共渐近线系的双曲线方程的应用。
例6 (1997年全国高考题)椭圆C与椭圆关于直线x+y=0对称,椭圆C的方程是( )
A. B.
C. D.
分析 设所求椭圆C上任一点M(x,y),易知M关于直线x+y=0的对称点在已知椭圆上,可得椭圆C的方程。
解 设椭圆C上任一点M(x,y),利用M关于直线x+y=0的对称点为M’(-x,-y),由题意可知,M’是已知椭圆上的点。
∴所求方程为 即 ,
故选A。
例7 (1990年广东题)一个动点在圆x2+y2=1上移动时,它与定点(3,0)连线中点的轨迹方程是( ).
A.( x+3)2+y2=4 B. (x-3)2+y2=1 C. (2x-3)2+4y2=1 D. (x+3/2)2+y2=1/2
解 如图,设M为圆上任意一点,
定点为A (3,0),连AM,设AM中点为N,OA中点为C(3/2,0),
则CN=1/2,于是N到C的距离为定长1/2,
其轨迹方程为(x-3/2)2+y2=1/4,即(2x-3)2+4y2=1,
因此选C。
说明 例8例9解法为几何法,即当题目中出现圆、平行四边形等等平面图形时,应充分利用它们的几何性质,寻找所求动点满足的几何条件去建立等量关系,在此题中此法比使用其他方法简便。
例8 已知定点A(3,0),P是单位圆x2+y2=上的动点,∠AOP的平分线交PA于M,求M点的轨迹方程。
解 如图,设M、P的坐标分别是(x,y)及(x。,y。)
由三角形角平分线的性质得。
,即
∴
x= xo=,
y= yo=
∵xo2+yo2=1, ∴M点的轨迹方程是()2+()2=1,
即M :(x-+y2=.
说明 本题解法为代入法,即利用所求轨迹上的动点坐标x和y表示出已知曲线上的动点坐标xo和yo,再代入已知曲线方程就可得到所求轨迹的方程,这也是求圆锥曲线方程使用率很高的方法。
例9 方程ax2+bx+c=0(a.b.c∈R,a≠0)的判别式的值等于1,两根之积为常数k(k≠0),求点(b,c)所表示的曲线方程。
解 根据题意有
b2-4ac=1,
消去a得,b2-4 即b2-。
∴点(b,c)所在曲的线方程是x2-。
说明 本题解法为参数法。
例10(1993年高考题)在面积为1的⊿PMN中,tg∠PMN=1/2,tg∠MNP=-2。建立适当的坐标系,求出以M、N为焦点,且过点P的椭圆方程。
解 如图,以MN所在直线为x轴,MN的垂直平分线为y轴建立坐标系,
设以M、N为焦点,且过点P的椭圆方程为,焦点为M(-c,0)、N(c,0)。
由tg∠PMN=1/2, tg=(∠PMN)=2得直线PM和PN的方程分别为y=(x+c)和y=2(x-c),
联立两方程解得x=,y=,即P点坐标为(,),
故S⊿PMN=
由条件SΔPMN=1得c=,即P点坐标为(),
代入椭圆方程得,化简得3b4-8b2-3=0,
解得b=,a2=b2+c2=3+=.
所以,所求方程为.
例11 (1998年全国高考题)如图,直线l1和l2相交于点M,电Nl1,以A、B为端点的曲线段C上任意一点到l2的距离与到点N的距离相等,若⊿AMN为锐角三角形,=,=3,且=6,建立适当坐标系,求曲线段C的方程。
解 如图,以l1为x轴,MN的垂直平分线为y轴建立坐标系,根据题意,曲线段C是以N为焦点,l2为准线的抛物线的一段。
设曲线C的方程为y2=2px (p>0),(xAXxB,y>0), 其中xA, xB分别为A、B的横坐标,p=。
∴M(-p/2,0),N(p/2,0)。
由=,=3得
(xA+p/2)2+2p xA=17┄①,
(xA-p/2)2+2p xA =9 ┄② .
联立①②解得xA=p/4, 代入①式并由p>0解得p=4, xA=1;或p=2,xA=2。
∵⊿AMN是锐角三角形,∴p/2> xA,故舍去p=2,xA=2。
由点P在曲线段C上,得xB=-P/2=4。
综上得曲线段C的方程为 y2=8x(1≤x≤4, y>0).
说明 以上两例主要考查根据所给条件选择适当坐标系,(利用待定系数法)求曲线方程的解析几何的基本思想,考查椭圆与抛物线的概念和性质、曲线与方程的关系以及综合应用知识的能力。
6.小结
求圆锥曲线的方程(含轨迹)是解析几何的基本内容,必须把握好各种方法在什么情况下使用,适当选择解法、适当选择坐标系、合理充分地利用数形条件建立等式关系是解决此类问题的基本功。解题的主要规律可以概括为:“曲线定义要记清,数形关系须探明,一定选好坐标系,方法合理过程畅。选参、引参用好参,代入消元巧转换,待定系数为常法,列出等式是关键,理清关系思路开,一点破译全局活。”
高中圆锥曲线难吗
圆锥曲线是选修模块中至为重要的一节,大概在高二上学期,但各学校进度可能不一样,它是高考重点,但一旦学会并且掌握技巧,就很简单了。
圆锥曲线主要讲椭圆,双曲线和抛物线的内容,这里简单给你介绍一下。为了直观,我给你几幅图。
高考数学圆锥曲线最值范围问题
楼主你好,打好基础是关键也就是说更多的精力花在必修上要好的多,这两类题相当耗时,个人建议你稍微花点时间去翻阅这两类题的答案,你会发现其实这两类题解答都是有固定套路的,如果不是十分的尖子生建议你只需要找出套路然后按套路把得分点写出来就好了
高考数学圆锥曲线选择题各类解法
其实这两个题都是分类型的,建议将见过的题整理一下,会有不少收获哦。一般来说,圆锥曲线分两问,第一问简单,不用练也会。第二问思路也不难,就是计算较难。导数的话,一般分三问,前两问一般能做出来,第三问也就4到5分,如果你不是数学特别好的话一般做不出来。所以答题时,先做圆锥曲线第一问,第二问做到把圆锥曲线和直线方程联立。然后就做导数前两问。检查完还有时间的话,再解圆锥曲线第二问,做导数第三问。这样的话基本差不多了。
高考选做题极坐标与参数方程题型
很大可能考,这是极坐标与参数方程的重要考点
我去年只考了填空题很简单的一道,我是广东的